153 research outputs found

    Detection of bovine papillomavirus type 2 in the peripheral blood of cattle with urinary bladder tumours: possible biological role

    Get PDF
    Bovine papillomavirus type 2 (BPV-2) infection has been associated with urinary bladder tumours in adult cattle grazing on bracken fern-infested land. In this study, we investigated the simultaneous presence of BPV-2 in whole blood and urinary bladder tumours of adult cattle in an attempt to better understand the biological role of circulating BPV-2. Peripheral blood samples were collected from 78 cattle clinically suffering from a severe chronic enzootic haematuria. Circulating BPV-2 DNA was detected in 61 of them and in two blood samples from healthy cows. Fifty of the affected animals were slaughtered at public slaughterhouses and neoplastic proliferations in the urinary bladder were detected in all of them. BPV-2 DNA was amplified and sequenced in 78% of urinary bladder tumour samples and in 38.9% of normal samples as a control. Circulating episomal BPV-2 DNA was detected in 78.2% of the blood samples. Simultaneous presence of BPV-2 DNA in neoplastic bladder and blood samples was detected in 37 animals. Specific viral E5 mRNA and E5 oncoprotein were also detected in blood by RT-PCR and Western blot/immunocytochemistry, respectively. It is likely that BPV-2 can persist and be maintained in an active status in the bloodstream, in particular in the lymphocytes, as a reservoir of viral infection that, in the presence of co-carcinogens, may cause the development of urinary bladder tumours

    Short communication: Detection of human Torque teno virus in the milk of water buffaloes (Bubalus bubalis)

    Get PDF
    Forty-four raw milk and 15 serum samples from 44 healthy water buffaloes reared in Caserta, southern Italy, the most important region in Europe for buffalo breeding, were examined to evaluate the presence of Torque teno viruses (TTV) using molecular tools. Furthermore, 8 pooled pasteurized milk samples (from dairy factories having excellent sanitary conditions) and 6 Mozzarella cheese samples were also tested. Four of the cheese samples were commercial Mozzarella cheese; the remaining 2 were prepared with TTV-containing milk. Human TTV were detected and confirmed by sequencing in 7 samples of milk (approximately 16%). No TTV were found in serum, pooled pasteurized milk, or Mozzarella cheese samples. The samples of Mozzarella cheese prepared with TTV-containing milk did not show any presence of TTV, which provides evidence that standard methodological procedures to prepare Mozzarella cheese seem to affect viral structure, making this food fit for human consumption. The 7 TTV species from water buffaloes were identified as genotypes corresponding to the tth31 (3 cases), sle 1981, sle 2031, and NLC030 (2 cases each) human isolates. Although cross-species infection may occur, detection of TTV DNA in milk but not in serum led us to believe that its presence could be due to human contamination rather than a true infection. Finally, the mode of transmission of TTV has not been determined. Contaminated of the food chain with TTV may be a potential risk for human health, representing one of the multiple routes of infection

    Molecular mechanisms of the acute kidney injury to chronic kidney disease transition: An updated view

    Get PDF
    Increasing evidence has demonstrated the bidirectional link between acute kidney injury (AKI) and chronic kidney disease (CKD) such that, in the clinical setting, the new concept of a unified syndrome has been proposed. The pathophysiological reasons, along with the cellular and molecular mechanisms, behind the ability of a single, acute, apparently self-limiting event to drive chronic kidney disease progression are yet to be explained. This acute injury could promote progression to chronic disease through different pathways involving the endothelium, the inflammatory response and the development of fibrosis. The interplay among endothelial cells, macrophages and other immune cells, pericytes and fibroblasts often converge in the tubular epithelial cells that play a central role. Recent evidence has strengthened this concept by demonstrating that injured tubules respond to acute tubular necrosis through two main mechanisms: The polyploidization of tubular cells and the proliferation of a small population of self-renewing renal progenitors. This alternative pathophysiological interpretation could better characterize functional recovery after AKI

    Simultaneous detection of enteropathogenic viruses in buffalos faeces using multiplex reverse transcription-polymerase chain reaction (mRT-PCR)

    Get PDF
    A multiplex reverse transcription- polymerase chain reaction (mRT-PCR) assay that detects Bovine Viral Diarrhoea Virus, Bovine Coronavirus, and Group A Rotaviruses in infected cell-culture fluids and clinical faecal samples is described. One hundred twenty faecal samples from buffalo calves with acute gastroenteritis were tested. The mRT-PCR was validated against simplex RT-PCR with published primers for Pestivirus, Coronavirus and Rotavirus. The multiplex RT-PCR was equally sensitive and specific in detecting viral infections compared with simplex RT-PCR. The mRT-PCR readily identified viruses by discriminating the size of their amplified gene products. This mRT-PCR may be a sensitive and rapid assay for surveillance of buffalo enteric viruses in field specimens. This novel multiplex RT-PCR is an attractive technique for the rapid, specific, and cost-effective laboratory diagnosis of acute gastroenteritis

    Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells.

    Get PDF
    Acute tissue injury causes DNA damage and repair processes involving increased cell mitosis and polyploidization, leading to cell function alterations that may potentially drive cancer development. Here, we show that acute kidney injury (AKI) increased the risk for papillary renal cell carcinoma (pRCC) development and tumor relapse in humans as confirmed by data collected from several single-center and multicentric studies. Lineage tracing of tubular epithelial cells (TECs) after AKI induction and long-term follow-up in mice showed time-dependent onset of clonal papillary tumors in an adenoma-carcinoma sequence. Among AKI-related pathways, NOTCH1 overexpression in human pRCC associated with worse outcome and was specific for type 2 pRCC. Mice overexpressing NOTCH1 in TECs developed papillary adenomas and type 2 pRCCs, and AKI accelerated this process. Lineage tracing in mice identified single renal progenitors as the cell of origin of papillary tumors. Single-cell RNA sequencing showed that human renal progenitor transcriptome showed similarities to PT1, the putative cell of origin of human pRCC. Furthermore, NOTCH1 overexpression in cultured human renal progenitor cells induced tumor-like 3D growth. Thus, AKI can drive tumorigenesis from local tissue progenitor cells. In particular, we find that AKI promotes the development of pRCC from single progenitors through a classical adenoma-carcinoma sequence

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore