293 research outputs found

    Modelling the deformation of biologically inspired flexible structures for needle steering

    Get PDF
    Recent technical advances in minimally invasive surgery have been enabled by the development of new medical instruments and technologies. To date, the vast majority of mechanisms used within a clinical context are rigid, contrasting with the compliant nature of biological tissues. The field of robotics has seen an increased interest in flexible and compliant systems, and in this paper we investigate the behaviour of deformable multi-segment structures, which take their inspiration from the ovipositor design of parasitic wood wasps. These configurable structures have been shown to steer through highly compliant substrates, potentially enabling percutaneous access to the most delicate of tissues, such as the brain. The model presented here sheds light on how the deformation of the unique structure is related to its shape, and allows comparison between different potential designs. A finite element study is used to evaluate the proposed model, which is shown to provide a good fit (root-mean-square deviation 0.2636 mm for 4-segment case). The results show that both 3-segment and 4-segment designs are able to achieve deformation in all directions, however the magnitude of deformation is more consistent in the 4-segment case

    A mechanics-based model for 3D steering of programmable bevel-tip needles

    Get PDF
    We present a model for the steering of programmable bevel-tip needles, along with a set of experiments demonstrating the 3D steering performance of a new, clinically viable, 4-segment, pre-production prototype. A multi-beam approach, based on Euler-Bernoulli beam theory, is used to model the novel multi-segment design of these needles. Finite element simulations for known loads are used to validate the multi-beam deflection model. A clinically sized (2.5 mm outer diameter), 4-segment programmable bevel-tip needle, manufactured by extrusion of a medical-grade polymer, is used to conduct an extensive set of experimental trials to evaluate the steering model. For the first time, we demonstrate the ability of the 4-segment needle design to steer in any direction with a maximum achievable curvature of 0.0192±0.0014 mm⁻¹. Finite element simulations confirm that the multi-beam approach produces a good model fit for tip deflections, with a root-mean-square deviation (RMSD) in modeled tip deflection of 0.2636 mm. We perform a parameter optimization to produce a best-fit steering model for the experimental trials, with a RMSD in curvature prediction of 1.12×10⁻³ mm⁻¹

    Cyclic motion control for programmable bevel-tip needles 3D steering: a simulation study

    Get PDF
    Flexible, steerable, soft needles are desirable in Minimally Invasive Surgery to achieve complex trajectories while maintaining the benefits of percutaneous intervention compared to open surgery. One such needle is the multi-segment Programmable Bevel-tip Needle (PBN), which is inspired by the mechanical design of the ovipositor of certain wasps. PBNs can steer in 3D whilst minimizing the force applied to the surrounding substrate, due to the cyclic motion of the segments. Taking inspiration also from the control strategy of the wasp to perform insertions and lay their eggs, this paper presents the design of a cyclic controller that can steer a PBN to produce a desired trajectory in 3D. The performance of the controller is demonstrated in simulation in comparison to that of a direct controller without cyclic motion. It is shown that, while the same steering curvatures can be attained by both controllers, the time taken to achieve the configuration is longer for the cyclic controller, leading to issues of potential under-steering and longer insertion times

    The impact of nandrolone decanoate in the osseointegration of dental implants in a rabbit model: Histological and micro-radiographic results

    Get PDF
    Despite high rates of osseointegration in healthy patients, complex cases present an increased risk of osseointegration failure when treated with dental implants. Furthermore, if immediate loading of the implants is used, maximizing the response of the host organism would be desirable. Anabolic steroids, such as Nandrolone Decanoate (ND), are reported to have beneficial clinical effects on various bone issues such as osteoporosis and bone fractures. However, their beneficial effects in promoting osseointegration in dental implant placement have not been documented. The study aimed to examine histological changes induced by ND in experimental dental implants in rabbit models. Two dental implants were placed in the tibias of 24 adult rabbits. Rabbits were allocated to one of two groups: control group or test group. Rabbits in the latter group were given nandrolone decanoate (15 mg/kg, immediately after implant placement and after 1 week). Micro-radiographic and histological analyses were assessed to characterize the morphological changes promoted by the nandrolone decanoate use. Total bone volume and fluorescence were significantly higher in the control group after 2 weeks. Such a difference between the two groups might indicate that, initially, nandrolone lengthens the non-specific healing period characteristic of all bone surgeries. However, after the beginning of the reparative processes, the quantity of newly formed bone appears to be significantly higher, indicating a positive stimulation of the androgen molecule on bone metabolism. Based on micro-radiology and fluorescence microscopy, nandrolone decanoate influenced bone regeneration in the implant site. The anabolic steroid nandrolone decanoate affects the healing processes of the peri-implant bone and therefore has the potential to improve the outcomes of implant treatment in medically complex patients

    Towards a procedure-optimised steerable catheter for deep-seated neurosurgery

    Get PDF
    In recent years, steerable needles have attracted significant interest in relation to minimally invasive surgery (MIS). Specifically, the flexible, programmable bevel-tip needle (PBN) concept was successfully demonstrated in vivo in an evaluation of the feasibility of convection-enhanced delivery (CED) for chemotherapeutics within the ovine model with a 2.5 mm PBN prototype. However, further size reductions are necessary for other diagnostic and therapeutic procedures and drug delivery operations involving deep-seated tissue structures. Since PBNs have a complex cross-section geometry, standard production methods, such as extrusion, fail, as the outer diameter is reduced further. This paper presents our first attempt to demonstrate a new manufacturing method for PBNs that employs thermal drawing technology. Experimental characterisation tests were performed for the 2.5 mm PBN and the new 1.3 mm thermally drawn (TD) PBN prototype described here. The results show that thermal drawing presents a significant advantage in miniaturising complex needle structures. However, the steering behaviour was affected due to the choice of material in this first attempt, a limitation which will be addressed in future work

    Intraoperative manufacturing of patient specific instrumentation for shoulder arthroplasty: a novel mechatronic approach

    Get PDF
    Optimal orthopaedic implant placement is a major contributing factor to the long term success of all common joint arthroplasty procedures. Devices such as three-dimensional (3D) printed, bespoke guides and orthopaedic robots are extensively described in the literature and have been shown to enhance prosthesis placement accuracy. These technologies, however, have significant drawbacks, such as logistical and temporal inefficiency, high cost, cumbersome nature and difficult theatre integration. A new technology for the rapid intraoperative production of patient specific instrumentation, which overcomes many of the disadvantages of existing technologies, is presented here. The technology comprises a reusable table side machine, bespoke software and a disposable element comprising a region of standard geometry and a body of mouldable material. Anatomical data from Computed Tomography (CT) scans of 10 human scapulae was collected and, in each case, the optimal glenoid guidewire position was digitally planned and recorded. The achieved accuracy compared to the preoperative bespoke plan was measured in all glenoids, from both a conventional group and a guided group. The technology was successfully able to intraoperatively produce sterile, patient specific guides according to a pre-operative plan in 5 minutes, with no additional manufacturing required prior to surgery. Additionally, the average guide wire placement accuracy was 1.58 mm and 6.82◦ degrees in the manual group, and 0.55 mm and 1.76◦ degrees in the guided group, also demonstrating a statistically significant improvement

    Functional analysis of Pro-inflammatory properties within the cerebrospinal fluid after subarachnoid hemorrhage in vivo and in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To functionally characterize pro-inflammatory and vasoconstrictive properties of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage (SAH) in vivo and in vitro.</p> <p>Methods</p> <p>The cerebrospinal fluid (CSF) of 10 patients suffering from SAH was applied to the transparent skinfold chamber model in male NMRI mice which allows for in vivo analysis of the microcirculatory response to a superfusat. Microvascular diameter changes were quantified and the numbers of rolling and sticking leukocytes were documented using intravital multifluorescence imaging techniques. Furthermore, the pro-inflammatory properties of CSF were assessed in vitro using a monocyte transendothelial migration assay.</p> <p>Results</p> <p>CSF superfusion started to induce significant vasoconstriction on days 4 and 6 after SAH. In parallel, CSF superfusion induced a microvascular leukocyte recruitment, with a significant number of leukocytes rolling (day 6) and sticking (days 2-4) to the endothelium. CSF of patients presenting with cerebral edema induced breakdown of blood vessel integrity in our assay as evidenced by fluorescent marker extravasation. In accordance with leukocyte activation in vivo, significantly higher in vitro monocyte migration rates were found after SAH.</p> <p>Conclusion</p> <p>We functionally characterized inflammatory and vasoactive properties of patients' CSF after SAH in vivo and in vitro. This pro-inflammatory milieu in the subarachnoid space might play a pivotal role in the pathophysiology of early and delayed brain injury as well as vasospasm development following SAH.</p

    Insights into infusion-based targeted drug delivery in brain: perspectives, challenges and opportunities

    Get PDF
    Targeted drug delivery in the brain is instrumental in the treatment of lethal brain diseases, such as glioblastoma multiforme, the most aggressive primary central nervous system tumour in adults. Infusion-based drug delivery techniques, which directly administer to the tissue for local treatment, as in convection-enhanced delivery (CED), provide an important opportunity; however, poor understanding of the pressure-driven drug transport mechanisms in the brain has hindered its ultimate success in clinical applications. In this review, we focus on the biomechanical and biochemical aspects of infusion-based targeted drug delivery in the brain and look into the underlying molecular level mechanisms. We discuss recent advances and challenges in the complementary field of medical robotics and its use in targeted drug delivery in the brain. A critical overview of current research in these areas and their clinical implications is provided. This review delivers new ideas and perspectives for further studies of targeted drug delivery in the brain

    A Real Space Description of Magnetic Field Induced Melting in the Charge Ordered Manganites: I. The Clean Limit

    Full text link
    We study the melting of charge order in the half doped manganites using a model that incorporates double exchange, antiferromagnetic superexchange, and Jahn-Teller coupling between electrons and phonons. We primarily use a real space Monte Carlo technique to study the phase diagram in terms of applied field (h)(h) and temperature (T)(T), exploring the melting of charge order with increasing hh and its recovery on decreasing hh. We observe hysteresis in this response, and discover that the `field melted' high conductance state can be spatially inhomogeneous even without extrinsic disorder. The hysteretic response plays out in the background of field driven equilibrium phase separation. Our results, exploring hh, TT, and the electronic parameter space, are backed up by analysis of simpler limiting cases and a Landau framework for the field response. This paper focuses on our results in the `clean' systems, a companion paper studies the effect of cation disorder on the melting phenomena.Comment: 16 pages, pdflatex, 11 png fig
    corecore