Cyclic motion control for programmable bevel-tip needles 3D steering: a simulation study

Abstract

Flexible, steerable, soft needles are desirable in Minimally Invasive Surgery to achieve complex trajectories while maintaining the benefits of percutaneous intervention compared to open surgery. One such needle is the multi-segment Programmable Bevel-tip Needle (PBN), which is inspired by the mechanical design of the ovipositor of certain wasps. PBNs can steer in 3D whilst minimizing the force applied to the surrounding substrate, due to the cyclic motion of the segments. Taking inspiration also from the control strategy of the wasp to perform insertions and lay their eggs, this paper presents the design of a cyclic controller that can steer a PBN to produce a desired trajectory in 3D. The performance of the controller is demonstrated in simulation in comparison to that of a direct controller without cyclic motion. It is shown that, while the same steering curvatures can be attained by both controllers, the time taken to achieve the configuration is longer for the cyclic controller, leading to issues of potential under-steering and longer insertion times

    Similar works