197 research outputs found

    Hippocampal neuronal cells that accumulate α-synuclein fragments are more vulnerable to Aβ oligomer toxicity via mGluR5--implications for dementia with Lewy bodies.

    Get PDF
    BackgroundIn dementia with Lewy bodies (DLB) abnormal interactions between α-synuclein (α-syn) and beta amyloid (Aβ) result in selective degeneration of neurons in the neocortex, limbic system and striatum. However, factors rendering these neurons selectively vulnerable have not been fully investigated. The metabotropic glutamate receptor 5 (mGluR5) has been shown to be up regulated in DLB and might play a role as a mediator of the neurotoxic effects of Aβ and α-syn in vulnerable neuronal populations. In this context, the main objective of the present study was to investigate the role of mGluR5 as a mediator of the neurotoxic effects of α-syn and Aβ in the hippocampus.ResultsWe generated double transgenic mice over-expressing amyloid precursor protein (APP) and α-syn under the mThy1 cassette and investigated the relationship between α-syn cleavage, Aβ, mGluR5 and neurodegeneration in the hippocampus. We found that compared to the single tg mice, the α-syn/APP tg mice displayed greater accumulation of α-syn and mGluR5 in the CA3 region of the hippocampus compared to the CA1 and other regions. This was accompanied by loss of CA3 (but not CA1) neurons in the single and α-syn/APP tg mice and greater loss of MAP 2 and synaptophysin in the CA3 in the α-syn/APP tg. mGluR5 gene transfer using a lentiviral vector into the hippocampus CA1 region resulted in greater α-syn accumulation and neurodegeneration in the single and α-syn/APP tg mice. In contrast, silencing mGluR5 with a lenti-shRNA protected neurons in the CA3 region of tg mice. In vitro, greater toxicity was observed in primary hippocampal neuronal cultures treated with Aβ oligomers and over-expressing α-syn; this effect was attenuated by down-regulating mGluR5 with an shRNA lentiviral vector. In α-syn-expressing neuronal cells lines, Aβ oligomers promoted increased intracellular calcium levels, calpain activation and α-syn cleavage resulting in caspase-3-dependent cell death. Treatment with pharmacological mGluR5 inhibitors such as 2-Methyl-6-(phenylethynyl)pyridine (MPEP) and 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) attenuated the toxic effects of Aβ in α-syn-expressing neuronal cells.ConclusionsTogether, these results support the possibility that vulnerability of hippocampal neurons to α-syn and Aβ might be mediated via mGluR5. Moreover, therapeutical interventions targeting mGluR5 might have a role in DLB

    Combined Active Humoral and Cellular Immunization Approaches for the Treatment of Synucleonopathies

    Get PDF
    Objectives: Parkinson’s Disease (PD), Dementia with Lewy bodies (DLB), and Multiple System Atrophy (MSA) are neurodegenerative disorders of the aging population characterized by the progressive accumulation of alpha-synuclein. Jointly these disorders have been denominated synucleinopathies and currently no disease modifying treatments are available. Previous in vivo studies in transgenic (tg) mice have shown that active and passive immunization targeting alpha-synuclein ameliorates to some extent deficits and synuclein accumulation, however it’s unknown if combining humoral and cellular immunization might synergize and also reduce inflammation and improve microglial cell mediated synuclein clearance. Methods: PDGF- alpha-synuclein tg mice and control non-tg mice were immunized with: 1) Glucan Particle (GP) adjuvant alone, 2) GP human (hu)- alpha-synuclein (active immunization), 3) GP plus rapamycin and 4) GP plus rapamycin and hu-alpha-synuclein (combined active and humoral) and analyzed by neuropathological and biochemical markers. Results: Compared to tg mice treated with adjuvant alone, mice immunized with GP hu-alpha-synuclein displayed a 30% reduction in alpha-synuclein accumulation. Combined immunotherapy with GP plus rapamycin and hu-alpha-synuclein resulted in 50% reduction in alpha-synuclein accumulation which was accompanied by reduced neuro-inflammation (Iba-1, GFAP, IL6, TNFalpha), phospho and insoluble alpha-synuclein, microglia and astroglia cell numbers, and retention of CD25, FoxP3 and CD4 positive cells. Levels of TGFb1 were also increased. Serological studies showed that active immunization resulted in higher levels of total IgG, IgG1 and IgG2 titers, levels were slightly higher in the combined group. Conclusions: In vivo studies targeting alpha-synuclein support the hypothesis that cellular immunization might enhance the effects of active immunotherapy for the treatment of synucleionopathies

    TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson's Disease.

    Get PDF
    Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies

    Peripheral Delivery of a CNS Targeted, Metalo-Protease Reduces Aβ Toxicity in a Mouse Model of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD), an incurable, progressive neurodegenerative disorder, is the most common form of dementia. Therapeutic options have been elusive due to the inability to deliver proteins across the blood-brain barrier (BBB). In order to improve the therapeutic potential for AD, we utilized a promising new approach for delivery of proteins across the BBB. We generated a lentivirus vector expressing the amyloid β-degrading enzyme, neprilysin, fused to the ApoB transport domain and delivered this by intra-peritoneal injection to amyloid protein precursor (APP) transgenic model of AD. Treated mice had reduced levels of Aβ, reduced plaques and increased synaptic density in the CNS. Furthermore, mice treated with the neprilysin targeting the CNS had a reversal of memory deficits. Thus, the addition of the ApoB transport domain to the secreted neprilysin generated a non-invasive therapeutic approach that may be a potential treatment in patients with AD

    Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo

    Get PDF
    The toxicity of α-synuclein invivo is not well understood. Rockenstein etal. describe an α-synuclein transgenic model expressing the E57K mutant that forms stable oligomers. They show that oligomers accumulate at synapses and that the mutation interferes with synaptic vesicles and is associated with behavioural deficits and neurodegeneratio

    Passive Immunization Reduces Behavioral and Neuropathological Deficits in an Alpha-Synuclein Transgenic Model of Lewy Body Disease

    Get PDF
    Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB

    Development of transgenic rats producing human β-amyloid precursor protein as a model for Alzheimer's disease: Transgene and endogenous APP genes are regulated tissue-specifically

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is a devastating neurodegenerative disorder that affects a large and growing number of elderly individuals. In addition to idiopathic disease, AD is also associated with autosomal dominant inheritance, which causes a familial form of AD (FAD). Some instances of FAD have been linked to mutations in the β-amyloid protein precursor (APP). Although there are numerous mouse AD models available, few rat AD models, which have several advantages over mice, have been generated.</p> <p>Results</p> <p>Fischer 344 rats expressing human APP driven by the ubiquitin-C promoter were generated via lentiviral vector infection of Fischer 344 zygotes. We generated two separate APP-transgenic rat lines, APP21 and APP31. Serum levels of human amyloid-beta (Aβ)<sub>40 </sub>were 298 pg/ml for hemizygous and 486 pg/ml for homozygous APP21 animals. Serum Aβ<sub>42 </sub>levels in APP21 homozygous rats were 135 pg/ml. Immunohistochemistry in brain showed that the human APP transgene was expressed in neurons, but not in glial cells. These findings were consistent with independent examination of enhanced green fluorescent protein (eGFP) in the brains of eGFP-transgenic rats. APP21 and APP31 rats expressed 7.5- and 3-times more APP mRNA, respectively, than did wild-type rats. Northern blots showed that the human APP transgene, driven by the ubiquitin-C promoter, is expressed significantly more in brain, kidney and lung compared to heart and liver. A similar expression pattern was also seen for the endogenous rat APP. The unexpected similarity in the tissue-specific expression patterns of endogenous rat APP and transgenic human APP mRNAs suggests regulatory elements within the cDNA sequence of APP.</p> <p>Conclusion</p> <p>This manuscript describes the generation of APP-transgenic inbred Fischer 344 rats. These are the first human AD model rat lines generated by lentiviral infection. The APP21 rat line expresses high levels of human APP and could be a useful model for AD. Tissue-specific expression in the two transgenic rat lines and in wild-type rats contradicts our current understanding of APP gene regulation. Determination of the elements that are responsible for tissue-specific expression of APP may enable new treatment options for AD.</p

    Mechanisms of Hybrid Oligomer Formation in the Pathogenesis of Combined Alzheimer's and Parkinson's Diseases

    Get PDF
    Background: Misfolding and pathological aggregation of neuronal proteins has been proposed to play a critical role in the pathogenesis of neurodegenerative disorders. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are frequent neurodegenerative diseases of the aging population. While progressive accumulation of amyloid b protein (Ab) oligomers has been identified as one of the central toxic events in AD, accumulation of a-synuclein (a-syn) resulting in the formation of oligomers and protofibrils has been linked to PD and Lewy body Disease (LBD). We have recently shown that Ab promotes a-syn aggregation and toxic conversion in vivo, suggesting that abnormal interactions between misfolded proteins might contribute to disease pathogenesis. However the molecular characteristics and consequences of these interactions are not completely clear. Methodology/Principal Findings: In order to understand the molecular mechanisms involved in potential Ab/a-syn interactions, immunoblot, molecular modeling, and in vitro studies with a-syn and Ab were performed. We showed in vivo in the brains of patients with AD/PD and in transgenic mice, Ab and a-synuclein co-immunoprecipitate and form complexes. Molecular modeling and simulations showed that Ab binds a-syn monomers, homodimers, and trimers, forming hybrid ringlike pentamers. Interactions occurred between the N-terminus of Ab and the N-terminus and C-terminus of a-syn. Interacting a-syn and Ab dimers that dock on the membrane incorporated additional a-syn molecules, leading to th
    corecore