357,289 research outputs found

    Turbulence and surface heat transfer near the stagnation point of a circular cylinder in turbulent flow

    Get PDF
    A turbulent boundary layer flow analysis of the momentum and thermal flow fields near the forward stagnation point due to a circular cylinder in turbulent cross flow is presented. Turbulence modeling length scale, anisotropic turbulence initial profiles and boundary conditions were identified as functions of the cross flow turbulence intensity and the boundary layer flow far field velocity. These parameters were used in a numerical computational procedure to calculate the mean velocity, mean temperature, and turbulence double correlation profiles within the flow field. The effects of the cross flow turbulence on the stagnation region momentum and thermal flow fields were investigated. This analysis predicted the existing measurements of the stagnation region mean velocity and surface heat transfer rate with cross flow Reynolds number and turbulence intensity less than 250,000 and 0.05, respectively

    Heat transfer, velocity-temperature correlation, and turbulent shear stress from Navier-Stokes computations of shock wave/turbulent boundary layer interaction flows

    Get PDF
    The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows

    Low-Complexity Reduced-Rank Beamforming Algorithms

    Full text link
    A reduced-rank framework with set-membership filtering (SMF) techniques is presented for adaptive beamforming problems encountered in radar systems. We develop and analyze stochastic gradient (SG) and recursive least squares (RLS)-type adaptive algorithms, which achieve an enhanced convergence and tracking performance with low computational cost as compared to existing techniques. Simulations show that the proposed algorithms have a superior performance to prior methods, while the complexity is lower.Comment: 7 figure

    A wind tunnel investigation of the shape of uncharged raindrops in the presence of an external, electric field

    Get PDF
    Results of a wind tunnel experiment in which electrically uncharged water drops of 500 to 3000 microns equivalent radius are freely suspended in the vertical air stream of the UCLA cloud tunnel are presented. During this suspension the drops were exposed to external vertical electric fields of 500 to 8,000 volts/cm. The change in drop shape with drop size and electric field strength was noted and is discussed in the light of theoretical work cited in the literature which unfortunately does not take into account the effects of air flow past the drop. The wind tunnel study is documented by stills from a 16 mm film record that demonstrates the shape of water drops in response to both hydrodynamic and electric forces

    Skin friction reduction by slot injection at Mach 0.8

    Get PDF
    Surface skin friction, boundary layer profiles and turbulent intensity due to axially symmetric tangential slot injection into a transonic boundary layer were measured. Effects of slot height, multiple slot injection, and injection mass flow rate on the surface skin friction downstream of the the slot have been investigated. Surface skin friction was a function of the injection mass flow rate for x/s 40. Large normal pressure gradient and relatively large turbulent intensity were found near the slot with small injection mass flow rate; the region the high turbulent intensity moved downstream with increasing injection mass flow rate. The results with two slot injections indicated that the distance between slots should be less than 30 slot heights in order to achieve some benefits from the first slot. Of significant importance in the present investigation is that the skin friction reduction obtained at transonic speed is of the same order as obtained in the hypersonic regime. Additional work is required in order to formulate a correlation between the turbulent intensity and the injection mass flow rate that may be used in future analysis
    corecore