235 research outputs found

    Applications of nanomedicine in antibacterial medical therapeutics and diagnostics

    Full text link
    The need for new and effective/efficient antibacterial therapeutics and diagnostics is necessary if we want to be able to maintain and improve the protection against pathogenic bacteria. Bacteria are becoming increasingly resistant to traditionally used antibiotics and as a result are a major health concern. The number of deaths and hospitalizations due to bacteria is increasing. Current methods of bacterial diagnostics are inefficient as they lack speed and ultra sensitivity and cannot be performed on site. This is where nanomedicine is playing a vital role. The discovery of new and innovative materials through the improvement in fabrication techniques has seen the establishment of an influx of novel antibacterial therapeutics and diagnostics. The goal of this review is to highlight the research that has been done through the implementation of nanomaterials and nanotechnologies for antibacterial medical therapeutic and diagnostic.<br /

    Microbial-based therapy of cancer: a new twist to age old practice

    Full text link
    The use of bacteria in the regression of tumors has long been known. Various approaches for using bacteria in cancer therapy include the use of bacteria as sensitizing agents for chemotherapy, as delivery agents for cancer drugs and as agents for gene therapy. The tumor regression stimulated by infecting microorganisms has been attributed to activation of the immune system of the host. However, recent studies indicate that when tumor-harboring mice with defective immune systems are infected with certain microorganisms, the regression of the tumor is still observed, suggesting that there are other host factors contributing to the microbial associated regression of tumors. Since the use of live or attenuated bacteria for tumor regression has associated toxic effects, studies are in progress to identify a pure microbial metabolite or any component of the microbial cell that might have anti-cancer activity. It has now been demonstrated that a redox protein from Pseudomonas aeruginosa, a cupredoxin, can enter into human cancer cells and trigger the apoptotic cell death. In vivo, this cupredoxin can lead to the regression of tumor growth in immunodeficient mice harboring xenografted melanomas and breast cancer tumors without inducing significant toxic effects, suggesting that it has potential anti-cancer activity. This bacterial protein interacts with p53 and modulates mammalian cellular activity. Hence, it could potentially be used as an anti-cancer agent for solid tumors and has translational value in tumor-targeted or in combinational-biochemotherapy strategies for cancer treatments. Here, we focus on diverse approaches to cancer biotherapy, including bacteriolytic and bacterially-derived anti-cancer agents with an emphasis on their mechanism of action and therapeutic potential

    Efficient generation and transcriptomic profiling of human iPSC-derived pulmonary neuroendocrine cells

    Get PDF
    Expansion of pulmonary neuroendocrine cells (PNECs) is a pathological feature of many human lung diseases. Human PNECs are inherently difficult to study due to their rarity (\u3c1% of total lung cells) and a lack of established protocols for their isolation. We used induced pluripotent stem cells (iPSCs) to generate induced PNECs (iPNECs), which express core PNEC markers, including ROBO receptors, and secrete major neuropeptides, recapitulating known functions of primary PNECs. Furthermore, we demonstrate that differentiation efficiency is increased in the presence of an air-liquid interface and inhibition of Notch signaling. Single-cell RNA sequencing (scRNA-seq) revealed a PNEC-associated gene expression profile that is concordant between iPNECs and human fetal PNECs. In addition, pseudotime analysis of scRNA-seq results suggests a basal cell origin of human iPNECs. In conclusion, our model has the potential to provide an unlimited source of human iPNECs to explore PNEC pathophysiology associated with several lung diseases

    Measuring Health: A Multivariate Approach

    Get PDF
    We examined the health status of 171 countries by employing factor analysis on various national health indicators for the period 2000–2005 to construct two new measures on health. The first measure is based on the health of individuals and the second on (the quality of) the health services. Our measures differ substantially from indicators used in previous studies on health and also lead to different rankings of countries. As rankings are not that informative without further information, we analyzed the distance between each country and the sample mean. Differences between countries are much more pronounced for our measure on health services than for our measure on the health of individuals. Using cluster analysis, we classified the countries in six homogenous groups

    The Intentional Use of Service Recovery Strategies to Influence Consumer Emotion, Cognition and Behaviour

    Get PDF
    Service recovery strategies have been identified as a critical factor in the success of. service organizations. This study develops a conceptual frame work to investigate how specific service recovery strategies influence the emotional, cognitive and negative behavioural responses of . consumers., as well as how emotion and cognition influence negative behavior. Understanding the impact of specific service recovery strategies will allow service providers' to more deliberately and intentionally engage in strategies that result in positive organizational outcomes. This study was conducted using a 2 x 2 between-subjects quasi-experimental design. The results suggest that service recovery has a significant impact on emotion, cognition and negative behavior. Similarly, satisfaction, negative emotion and positive emotion all influence negative behavior but distributive justice has no effect

    Identifying subtypes of patients with neovascular age-related macular degeneration by genotypic and cardiovascular risk characteristics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the challenges in the interpretation of studies showing associations between environmental and genotypic data with disease outcomes such as neovascular age-related macular degeneration (AMD) is understanding the phenotypic heterogeneity within a patient population with regard to any risk factor associated with the condition. This is critical when considering the potential therapeutic response of patients to any drug developed to treat the condition. In the present study, we identify patient subtypes or clusters which could represent several different targets for treatment development, based on genetic pathways in AMD and cardiovascular pathology.</p> <p>Methods</p> <p>We identified a sample of patients with neovascular AMD, that in previous studies had been shown to be at elevated risk for the disease through environmental factors such as cigarette smoking and genetic variants including the complement factor H gene (<it>CFH</it>) on chromosome 1q25 and variants in the <it>ARMS2</it>/HtrA serine peptidase 1 (<it>HTRA1</it>) gene(s) on chromosome 10q26. We conducted a multivariate segmentation analysis of 253 of these patients utilizing available epidemiologic and genetic data.</p> <p>Results</p> <p>In a multivariate model, cigarette smoking failed to differentiate subtypes of patients. However, four meaningfully distinct clusters of patients were identified that were most strongly differentiated by their cardiovascular health status (histories of hypercholesterolemia and hypertension), and the alleles of <it>ARMS2</it>/<it>HTRA1 </it>rs1049331.</p> <p>Conclusions</p> <p>These results have significant personalized medicine implications for drug developers attempting to determine the effective size of the treatable neovascular AMD population. Patient subtypes or clusters may represent different targets for therapeutic development based on genetic pathways in AMD and cardiovascular pathology, and treatments developed that may elevate CV risk, may be ill advised for certain of the clusters identified.</p

    Characterization of Schistosome Tegumental Alkaline Phosphatase (SmAP)

    Get PDF
    Schistosomes are parasitic platyhelminths that currently infect over 200 million people globally. The parasites can live for years in a putatively hostile environment - the blood of vertebrates. We have hypothesized that the unusual schistosome tegument (outer-covering) plays a role in protecting parasites in the blood; by impeding host immunological signaling pathways we suggest that tegumental molecules help create an immunologically privileged environment for schistosomes. In this work, we clone and characterize a schistosome alkaline phosphatase (SmAP), a predicted ∼60 kDa glycoprotein that has high sequence conservation with members of the alkaline phosphatase protein family. The SmAP gene is most highly expressed in intravascular parasite life stages. Using immunofluorescence and immuno-electron microscopy, we confirm that SmAP is expressed at the host/parasite interface and in internal tissues. The ability of living parasites to cleave exogenous adenosine monophosphate (AMP) and generate adenosine is very largely abolished when SmAP gene expression is suppressed following RNAi treatment targeting the gene. These results lend support to the hypothesis that schistosome surface enzymes such as SmAP could dampen host immune responses against the parasites by generating immunosuppressants such as adenosine to promote their survival. This notion does not rule out other potential functions for the adenosine generated e.g. in parasite nutrition

    Thermostable Direct Hemolysin Downregulates Human Colon Carcinoma Cell Proliferation with the Involvement of E-Cadherin, and β-Catenin/Tcf-4 Signaling

    Get PDF
    BACKGROUND: Colon cancers are the frequent causes of cancer mortality worldwide. Recently bacterial toxins have received marked attention as promising approaches in the treatment of colon cancer. Thermostable direct hemolysin (TDH) secreted by Vibrio parahaemolyticus causes influx of extracellular calcium with the subsequent rise in intracellular calcium level in intestinal epithelial cells and it is known that calcium has antiproliferative activity against colon cancer. KEY RESULTS: In the present study it has been shown that TDH, a well-known traditional virulent factor inhibits proliferation of human colon carcinoma cells through the involvement of CaSR in its mechanism. TDH treatment does not induce DNA fragmentation, nor causes the release of lactate dehydrogenase. Therefore, apoptosis and cytotoxicity are not contributing to the TDH-mediated reduction of proliferation rate, and hence the reduction appears to be caused by decrease in cell proliferation. The elevation of E-cadherin, a cell adhesion molecule and suppression of β-catenin, a proto-oncogene have been observed in presence of CaSR agonists whereas reverse effect has been seen in presence of CaSR antagonist as well as si-RNA in TDH treated cells. TDH also triggers a significant reduction of Cyclin-D and cdk2, two important cell cycle regulatory proteins along with an up regulation of cell cycle inhibitory protein p27(Kip1) in presence of CaSR agonists. CONCLUSION: Therefore TDH can downregulate colonic carcinoma cell proliferation and involves CaSR in its mechanism of action. The downregulation occurs mainly through the involvement of E-cadherin-β-catenin mediated pathway and the inhibition of cell cycle regulators as well as upregulation of cell cycle inhibitors

    K13 blocks KSHV lytic replication and deregulates vIL6 nad hIL6 expression: A model of lytic replication induced clonal selection in viral oncogenesis

    Get PDF
    Background. Accumulating evidence suggests that dysregulated expression of lytic genes plays an important role in KSHV (Kaposi's sarcoma associated herpesvirus) tumorigenesis. However, the molecular events leading to the dysregulation of KSHV lytic gene expression program are incompletely understood. Methodoloxy/Principal Findings. We have studied the effect of KSHV-encoded latent protein vFLIP K13, a potent activator of the NF-κB pathway, on lytic reactivation of the virus. We demonstrate that K13 antagonizes RTA, the KSHV lytic-regulator, and effectively blocks the expression of lytic proteins, production of infectious virions and death of the infected cells. Induction of lytic replication selects for clones with increased K13 expression and NF-κB activity, while siRNA-mediated silencing of K13 induces the expression of lytic genes. However, the suppressive effect of K13 on RTA-induced lytic genes is not uniform and it falls to block RTA-induced viral IL6 secretion and cooperates with RTA to enhance cellular IL-6 production, thereby dysregulating the lytic gene expression program. Conclusions/Significance. Our results support a model in which ongoing KSHV, lytic replication selects for clones with progressively higher levels of K13 expression and NF-κB activity, which in turn drive KSHV tumorigenesis by not only directly stimulating cellular survival and proliferation, but also indirectly by dysregulating the viral lytic gene program and allowing non-lytic production of growth-promoting viral and cellular genes. Lytic Replication-Induced Clonal Selection (LyRICS) may represent a general mechanism in viral oncogenesis. 2007 Zhao et al

    Defining the genotypic and phenotypic spectrum of X-linked MSL3-related disorder

    Get PDF
    PURPOSE: We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). METHODS: Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. RESULTS: We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. CONCLUSION: Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals
    • …
    corecore