2,454 research outputs found

    Dust Ablation on the Giant Planets: Consequences for Stratospheric Photochemistry

    Full text link
    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe, A.R.~et al.~[2016], Icarus 264, 369), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.00.7+2.2×107^{+2.2}_{-0.7} \, \times \, 10^7 O atoms cm2^{-2} s1^{-1} to Jupiter, 7.45.1+16×104^{+16}_{-5.1} \, \times 10^4 cm2^{-2} s1^{-1} to Saturn, 8.96.1+19×104^{+19}_{-6.1} \, \times \, 10^4 cm2^{-2} s1^{-1} to Uranus, and 7.55.1+16×105^{+16}_{-5.1} \, \times \, 10^5 cm2^{-2} s1^{-1} to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2_2O, and CO2_2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2_2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process -- photochemistry alone cannot efficiently convert the H2_2O into CO on the giant planets.Comment: accepted in Icaru

    Measurement of the Cosmic Optical Background using the Long Range Reconnaissance Imager on New Horizons

    Full text link
    The cosmic optical background is an important observable that constrains energy production in stars and more exotic physical processes in the universe, and provides a crucial cosmological benchmark against which to judge theories of structure formation. Measurement of the absolute brightness of this background is complicated by local foregrounds like the Earth's atmosphere and sunlight reflected from local interplanetary dust, and large discrepancies in the inferred brightness of the optical background have resulted. Observations from probes far from the Earth are not affected by these bright foregrounds. Here we analyze data from the Long Range Reconnaissance Imager (LORRI) instrument on NASA's New Horizons mission acquired during cruise phase outside the orbit of Jupiter, and find a statistical upper limit on the optical background's brightness similar to the integrated light from galaxies. We conclude that a carefully performed survey with LORRI could yield uncertainties comparable to those from galaxy counting measurements.Comment: 35 pages, 11 figures, published in Nature Communication

    A Novel Protocol-Authentication Algorithm Ruling Out a Man-in-the-Middle Attack in Quantum Cryptography

    Full text link
    In this work we review the security vulnerability of Quantum Cryptography with respect to "man-in-the-middle attacks" and the standard authentication methods applied to counteract these attacks. We further propose a modified authentication algorithm which features higher efficiency with respect to consumption of mutual secret bits.Comment: 4 pages, submitted to the International Journal of Quantum Information, Proceedings of the meeting "Foundations of Quantum Information", Camerino, April 200

    Photon bunching in parametric down-conversion with continuous wave excitation

    Full text link
    The first direct measurement of photon bunching (g2 correlation function) in one output arm of a spontaneous-parametric-down-conversion source operated with a continuous pump laser in the single-photon regime is demonstrated. The result is in agreement with the statistics of a thermal field of the same coherence length, and shows the feasibility of investigating photon statistics with compact cw-pumped sources. Implications for entanglement-based quantum cryptography are discussed.Comment: 7 pages, 4 figures, expanded introduction and experimental details added. Accepted for publication in Phys.Rev.

    Damped and sub-damped Lyman-α absorbers in z > 4 QSOs

    Get PDF
    We present the results of a survey of damped (DLA, log N(H I) > 20.3) and sub-damped Lyman-α systems (19.5 2.55 along the lines-of-sight to 77 quasars with emission redshifts in the range 4 19.5 were detected of which 40 systems are damped Lyman-α systems for an absorption length of ΔX = 378. About half of the lines of sight of this homogeneous survey have never been investigated for DLAs. We study the evolution with redshift of the cosmological density of the neutral gas and find, consistent with previous studies at similar resolution, that Ω_(DLA,HI) decreases at z > 3.5. The overall cosmological evolution of Ω_(HI) shows a peak around this redshift. The H I column density distribution for log N(H I) ≥ 20.3 is fitted, consistent with previous surveys, with a single power-law of index α ~ −1.8 ± 0.25. This power-law overpredicts data at the high-end and a second, much steeper, power-law (or a gamma function) is needed. There is a flattening of the function at lower H I column densities with an index of α ~ −1.4 for the column density range log N(H I) = 19.5−21. The fraction of H I mass in sub-DLAs is of the order of 30%. The H I column density distribution does not evolve strongly from z ~ 2.5 to z ~ 4.5

    Assessing the Quality of Actions

    Get PDF
    While recent advances in computer vision have provided reliable methods to recognize actions in both images and videos, the problem of assessing how well people perform actions has been largely unexplored in computer vision. Since methods for assessing action quality have many real-world applications in healthcare, sports, and video retrieval, we believe the computer vision community should begin to tackle this challenging problem. To spur progress, we introduce a learning-based framework that takes steps towards assessing how well people perform actions in videos. Our approach works by training a regression model from spatiotemporal pose features to scores obtained from expert judges. Moreover, our approach can provide interpretable feedback on how people can improve their action. We evaluate our method on a new Olympic sports dataset, and our experiments suggest our framework is able to rank the athletes more accurately than a non-expert human. While promising, our method is still a long way to rivaling the performance of expert judges, indicating that there is significant opportunity in computer vision research to improve on this difficult yet important task.National Science Foundation (U.S.). Graduate Research FellowshipGoogle (Firm) (Research Award)United States. Office of Naval Research. Multidisciplinary University Research Initiative (N000141010933

    Practical Quantum Key Distribution with Polarization-Entangled Photons

    Full text link
    We present an entangled-state quantum cryptography system that operated for the first time in a real world application scenario. The full key generation protocol was performed in real time between two distributed embedded hardware devices, which were connected by 1.45 km of optical fiber, installed for this experiment in the Vienna sewage system. The generated quantum key was immediately handed over and used by a secure communication application.Comment: 5 pages, 3 figure

    Equivalence between the real time Feynman histories and the quantum shutter approaches for the "passage time" in tunneling

    Get PDF
    We show the equivalence of the functions Gp(t)G_{\rm p}(t) and Ψ(d,t)2|\Psi(d,t)|^2 for the ``passage time'' in tunneling. The former, obtained within the framework of the real time Feynman histories approach to the tunneling time problem, using the Gell-Mann and Hartle's decoherence functional, and the latter involving an exact analytical solution to the time-dependent Schr\"{o}dinger equation for cutoff initial waves
    corecore