1,899 research outputs found
Colorblind Ideology and Perceptions of Minority Children During a Fictionalized Parent-Child Discipline Scene
Belief in colorblind ideology among 200 social service providers and its associations with their evaluations of a fictionalized minority family were examined. Perceptions of the family in the first scenes of the movie Crooklyn included the mother’s competency, abusiveness, supportiveness, and irresponsibility, as well as her children’s respectfulness, obedience, lack of control, and aggressiveness. Colorblind ideology was operationalized as participants’ reported degree of belief that differences should be ignored when encountering others. Significant associations were found between degree of belief in ignoring differences and perceptions of the children as aggressive and out-of-control. Therefore, as the tendency to believe in ignoring differences increased, the tendency to see the Crooklyn children as aggressive and out-of- control also increased. Imposing colorblind ideologies when evaluating minority children may be associated with increasingly negative perceptions, and therefore may not be in the children’s best interest. Implications for improving social service-provision also are discussed
Advanced smoke meter development survey and analysis
Ideal smoke meter characteristics are determined to provide a basis for evaluation of candidate systems. Five promising techniques are analyzed in detail to evaluate compilance with the practical smoke meter requirements. Four of the smoke measurement concepts are optical methods: Modulated Transmission (MODTRAN), Cross Beam Absorption Counter (CBAC), Laser Induced Incandescence (LIN), and Photoacoustic Spectroscopy (PAS). A rapid response filter instrument called a Taper Element Oscillating Microbalance (TEOM) is also evaluated. For each technique, the theoretical principles are described, the expected performance is determined, and the advantages and disadvantages are discussed The expected performance is evaluated against each of the smoke meter specifications, and the key questions for further study are given. The most promising smoke meter technique analyzed was MODTRAN, which is a variation on a direct transmission measurement. The soot-laden gas is passed through a transmission cell, and the gas pressure is modulated by a speaker
Dynamical Linked Cluster Expansions: A Novel Expansion Scheme for Point-Link-Point-Interactions
Dynamical linked cluster expansions are linked cluster expansions with
hopping parameter terms endowed with their own dynamics. This amounts to a
generalization from 2-point to point-link-point interactions. We develop an
associated graph theory with a generalized notion of connectivity and describe
an algorithmic generation of the new multiple-line graphs. We indicate physical
applications to spin glasses, partially annealed neural networks and SU(N)
gauge Higgs systems. In particular the new expansion technique provides the
possibility of avoiding the replica-trick in spin glasses. We consider
variational estimates for the SU(2) Higgs model of the electroweak phase
transition. The results for the transition line, obtained by dynamical linked
cluster expansions, agree quite well with corresponding high precision Monte
Carlo results.Comment: 41 pages, latex2e, 10 postscript figure
Study of resonance light scattering for remote optical probing
Enhanced scattering and fluorescence processes in the visible and UV were investigated which will enable improved remote measurements of gas properties. The theoretical relationship between scattering and fluorescence from an isolated molecule in the approach to resonance is examined through analysis of the time dependence of re-emitted light following excitation of pulsed incident light. Quantitative estimates are developed for the relative and absolute intensities of fluorescence and resonance scattering. New results are obtained for depolarization of scattering excited by light at wavelengths within a dissociative continuum. The experimental work was performed in two separate facilities. One of these utilizes argon and krypton lasers, single moded by a tilted etalon, and a 3/4 meter double monochromator. This facility was used to determine properties of the re-emission from NO2, I2 and O3 excited by visible light. The second facility involves a narrow-line dye laser, and a 3/4 meter single monochromator. The dye laser produces pulsed light with 5 nsec pulse duration and 0.005 nm spectral width
A recurrent neural network with ever changing synapses
A recurrent neural network with noisy input is studied analytically, on the
basis of a Discrete Time Master Equation. The latter is derived from a
biologically realizable learning rule for the weights of the connections. In a
numerical study it is found that the fixed points of the dynamics of the net
are time dependent, implying that the representation in the brain of a fixed
piece of information (e.g., a word to be recognized) is not fixed in time.Comment: 17 pages, LaTeX, 4 figure
Hierarchical Self-Programming in Recurrent Neural Networks
We study self-programming in recurrent neural networks where both neurons
(the `processors') and synaptic interactions (`the programme') evolve in time
simultaneously, according to specific coupled stochastic equations. The
interactions are divided into a hierarchy of groups with adiabatically
separated and monotonically increasing time-scales, representing sub-routines
of the system programme of decreasing volatility. We solve this model in
equilibrium, assuming ergodicity at every level, and find as our
replica-symmetric solution a formalism with a structure similar but not
identical to Parisi's -step replica symmetry breaking scheme. Apart from
differences in details of the equations (due to the fact that here
interactions, rather than spins, are grouped into clusters with different
time-scales), in the present model the block sizes of the emerging
ultrametric solution are not restricted to the interval , but are
independent control parameters, defined in terms of the noise strengths of the
various levels in the hierarchy, which can take any value in [0,\infty\ket.
This is shown to lead to extremely rich phase diagrams, with an abundance of
first-order transitions especially when the level of stochasticity in the
interaction dynamics is chosen to be low.Comment: 53 pages, 19 figures. Submitted to J. Phys.
- …