1,234 research outputs found

    Heterogeneous physicochemistry of the winter polar stratosphere

    Get PDF
    Present chemical theories of the Antarctic ozone hole assume that heterogeneous reactions involving polar stratospheric clouds (PSCs) are the precursor of springtime ozone depletions. However, none of the theories quantify the rates of proposed heterogeneous processed, and none utilize the extensive data base on PSC's. Thus, all of the theories must be considered incomplete until the heterogeneous mechanisms are properly defined. A unified treatment developed of the cloud related processes, both physical and chemical, and the importance of these processes using observation data is calibrated. The rates are compared competitive heterogeneous processes to place reasonable limits on critical mechanisms such as the denitrification and dechlorination of the polar winter stratosphere. Among the subjects addressed here are the physical/chemical properties of PSC's including their relevant microphysical, optical and compositional characteristics, mass transfer rates of gaseous constituents to cloud particles, adsorption, accommodation and sticking coefficients on cloud particles, time constants for condensation, absorption and other microphysical processes, effects of solubility and vapor pressure on cloud composition, the statistics of cloud processing of chemically active condensible species, rate limiting steps in heterogeneous chemical reactions, and the nonlinear dependence of ozone loss on physical and chemical parameters

    The NASA-Ames Research Center stratospheric aerosol model. 2. Sensitivity studies and comparison with observatories

    Get PDF
    Sensitivity tests were performed on a one-dimensional, physical-chemical model of the unperturbed stratospheric aerosols, and model calculations were compared with observations. The tests and comparisons suggest that coagulation controls the particle number mixing ratio, although the number of condensation nuclei at the tropopause and the diffusion coefficient at high altitudes are also important. The sulfur gas source strength and the aerosol residence time are much more important than the supply of condensation nuclei in establishing mass and large particle concentrations. The particle size is also controlled mainly by gas supply and residence time. In situ observations of the aerosols and laboratory measurements of aerosols, parameters that can provide further information about the physics and chemistry of the stratosphere and the aerosols found there are provided

    An assessment of the effect of supersonic aircraft operations on the stratospheric ozone content

    Get PDF
    An assessment of the potential effect on stratospheric ozone of an advanced supersonic transport operations is presented. This assessment, which was undertaken because of NASA's desire for an up-to-date evaluation to guide programs for the development of supersonic technology and improved aircraft engine designs, uses the most recent chemical reaction rate data. From the results of the present assessment it would appear that realistic fleet sizes should not cause concern with regard to the depletion of the total ozone overburden. For example, the NOx emission of one type designed to cruise at 20 km altitude will cause the ozone overburden to increase by 0.03% to 0.12%, depending upon which vertical transport is used. These ozone changes can be compared with the predictions of a 1.74% ozone decrease (for 100 Large SST's flying at 20 km) made in 1974 by the FAA's Climatic Impact Assessment Program

    The NASA-AMES Research Center Stratospheric Aerosol Model. 1. Physical Processes and Computational Analogs

    Get PDF
    A time-dependent one-dimensional model of the stratospheric sulfate aerosol layer is presented. In constructing the model, a wide range of basic physical and chemical processes are incorporated in order to avoid predetermining or biasing the model predictions. The simulation, which extends from the surface to an altitude of 58 km, includes the troposphere as a source of gases and condensation nuclei and as a sink for aerosol droplets. The size distribution of aerosol particles is resolved into 25 categories with particle radii increasing geometrically from 0.01 to 2.56 microns such that particle volume doubles between categories

    An empirical approach to the nucleation of sulfuric acid droplets in the atmosphere

    Get PDF
    We use quantum mechanical evaluations of the Gibbs free energy of the hydrates of sulfuric acid, H2SO4. nH2O and (H2SO4)2 . nH2O to evaluate an empirical surface tension for sulfuric acid-water clusters containing few molecules. We use this surface tension to evaluate nucleation rates using classical heteromolecular theory. At low temperatures (T 213 K) the nucleation rates obtained with the empirical surface tensions are signifi cantly greater than those using bulk values of the surface tension. At higher temperatures the difference disappears

    Solar Effects on Global Climate Due to Cosmic Rays and Solar Energetic Particles

    Get PDF
    Although the work reported here does not directly connect solar variability with global climate change, this research establishes a plausible quantitative causative link between observed solar activity and apparently correlated variations in terrestrial climate parameters. Specifically, we have demonstrated that ion-mediated nucleation of atmospheric particles is a likely, and likely widespread, phenomenon that relates solar variability to changes in the microphysical properties of clouds. To investigate this relationship, we have constructed and applied a new model describing the formation and evolution of ionic clusters under a range of atmospheric conditions throughout the lower atmosphere. The activation of large ionic clusters into cloud nuclei is predicted to be favorable in the upper troposphere and mesosphere, and possibly in the lower stratosphere. The model developed under this grant needs to be extended to include additional cluster families, and should be incorporated into microphysical models to further test the cause-and-effect linkages that may ultimately explain key aspects of the connections between solar variability and climate

    Stratospheric aerosol modification by supersonic transport operations with climate implications

    Get PDF
    The potential effects on stratospheric aerosois of supersonic transport emissions of sulfur dioxide gas and submicron size soot granules are estimated. An interactive particle-gas model of the stratospheric aerosol is used to compute particle changes due to exhaust emissions, and an accurate radiation transport model is used to compute the attendant surface temperature changes. It is shown that a fleet of several hundred supersonic aircraft, operating daily at 20 km, could produce about a 20% increase in the concentration of large particles in the stratosphere. Aerosol increases of this magnitude would reduce the global surface temperature by less than 0.01 K

    IUCN red list evaluation of the orchidaceae endemic to apulia (Italy) and considerations on the application of the IUCN protocol to rare species

    Get PDF
    The conservation status of the ten taxonomically currently recognised orchid species and subspecies (eight in the genus Ophrys, and one each in the genera Epipactis and Serapias) endemic to Apulia (southeast Italy) is presented. Each taxon has been assessed against the internationally accepted IUCN criteria and categories. Of the ten taxa, eight ones are classified as threatened (Endangered or Vulnerable), one as Near Threatened and one as Least Concern. Given that nine of the ten analysed taxa were recently assessed, a comparison with the previous assessments is presented: 67% of the assessed taxa changed their IUCN category. Four taxa (Ophrys murgiana, O. oxyrrhynchos subsp. ingrassiae, O. peucetiae, O. tardans) are now assigned to a higher threat category, while two taxa (Ophrys gravinensis and O. oestrifera subsp. montis-gargani) are now assigned to a lower threat category. These category changes in such a very short time are due to the better knowledge on the number of mature individuals and on the threats affecting the species, and to the discovery of new occurring sites. The most important category change affects Ophrys tardans. The new assessment leads to the category Endangered, whereas in the previous assessment this species was indicated as Least Concern, i.e. as not threatened. Another species with a noteworthy category increase is Ophrys peucetiae, previously indicated as Least Concern and now assigned to the category Vulnerable. The authors discuss these results, highlighting that especially when assessing rare species with a small distribution range against the IUCN protocol, it should be taken into account that the assessment could be influenced (also noteworthy) by the effective knowledge on the distribution, on the population size and on the threats affecting the populations. As a consequence, field work is warmly suggested before assessing the threat category of rare taxa, given that an increased effort in field research often leads to the discovery of new sites and to a better estimation of the number of individuals and of the threats

    Trends in aerosol abundances and distributions

    Get PDF
    The properties of aerosols that reside in the upper atmosphere are described. Special emphasis is given to the influence these aerosols have on ozone observation systems, mainly through radiative effects, and on ambient ozone concentrations, mainly through chemical effects. It has long been appreciated that stratospheric particles can interfere with the remote sensing of ozone distribution. The mechanism and magnitude of this interference are evaluated. Separate sections deal with the optical properties of upper atmospheric aerosols, long-term trends in stratospheric aerosols, perturbations of the stratospheric aerosol layer by volcanic eruptions, and estimates of the impacts that such particles have on remotely measured ozone concentrations. Another section is devoted to a discussion of the polar stratospheric clouds (PSC's). These unique clouds, recently discovered by satellite observation, are now thought to be intimately connected with the Antarctic ozone hole. Accordingly, interest in PSC's has grown considerably in recent years. This chapter describes what we know about the morphology, physical chemistry, and microphysics of PSC's

    An investigation of the ionospheric D region at sunrise

    Get PDF
    The growth over sunrise of the C and D layers of the ionosphere is investigated. The model which is analyzed includes the negative ion species O(-), O2(-), O3(-), O4(-), NO3(-), CO3(-), and CO4(-). Ionization sources due to galactic cosmic rays, precipitated electrons, ionization of NO by scattered Lyman alpha radiation, and the direct solar radiation ionization are also included. The photodetachment of most of the negative ions is discussed, as well as the time variation of these parameters. The time variations of the electron, negative ion, and positive ion densities are calculated over sunrise. From these data, the mesospheric C and D layer development is plotted. Several model parameters are varied until the best agreement with experimentally determined electron densities is obtained. The results are discussed in light of several atmospheric parameters including the O and NO concentrations and the electron-ion recombination coefficient
    • …
    corecore