744 research outputs found
Spin Dynamics in Chains with Next-Nearest-Neighbor Exchange Interactions
Low-energy magnetic excitations in the spin-1/2 chain compound
(CHN)CuCl [known as (6MAP)CuCl] are probed by means of
tunable-frequency electron spin resonance. Two modes with asymmetric (with
respect to the line) frequency-field dependences are resolved,
illuminating the striking incompatibility with a simple uniform
Heisenberg chain model. The unusual ESR spectrum is explained in terms of the
recently developed theory for spin-1/2 chains, suggesting the important role of
next-nearest-neighbor interactions in this compound. Our conclusion is
supported by model calculations for the magnetic susceptibility of
(6MAP)CuCl, revealing a good qualitative agreement with experiment
THz-range free-electron laser ESR spectroscopy: techniques and applications in high magnetic fields
The successful use of picosecond-pulse free-electron-laser (FEL) radiation
for the continuous-wave THz-range electron spin resonance (ESR) spectroscopy
has been demonstrated. The combination of two linac-based FELs (covering the
wavelength range of 4 - 250 m) with pulsed magnetic fields up to 70 T
allows for multi-frequency ESR spectroscopy in a frequency range of 1.2 - 75
THz with a spectral resolution better than 1%. The performance of the
spectrometer is illustrated with ESR spectra obtained in the
2,2-diphenyl-1-picrylhydrazyl (DPPH) and the low-dimensional organic material
(CHN)CuCl.Comment: 9 pages, 9 figures. Rev. Sci. Instrum., accepte
A fine-grained silicon detector for high-energy gamma-ray astrophysics
We propose a silicon telescope to be placed in a satellite for the search of g-ray sources in the energy range between 25 MeV and 100 GeV. The proposed experiment will have an area of 2500 cm2, an energy resolution ranging from 7% to
8% and an angular resolution from 0.2 and 0.1 degrees between 1 GeV and 10 GeV. The telescope is based on the use of silicon strip detectors. Together with the energy
measurement, a calorimeter of this type allows the determination of the particle type and its arrival direction, through the analysis of the spatial and energetic distribution of the electromagnetic shower produced. Detectors based on silicon technology have many advantages for space applications: no gas refilling system or high voltages, no need of photomultipliers (low consumption), short dead time, possibility of selftriggering. The GILDA project has been designed having in mind the weight limitation of 400 kg required by the Resource-01 satellite and it is carried out in the
framework of the RIM (Russian Italian Mission) program. The launch is foreseen for the beginning of the next century
Measurements of Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Measurements of transverse energy flow are presented for neutral current
deep-inelastic scattering events produced in positron-proton collisions at
HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to
2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the
hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in
the hadronic centre of mass frame and is studied as a function of Q^2, x, W and
pseudorapidity. A comparison is made with QCD based models. The behaviour of
the mean transverse energy in the central pseudorapidity region and an interval
corresponding to the photon fragmentation region are analysed as a function of
Q^2 and W.Comment: 26 pages, 8 figures, submitted to Eur. Phys.
Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA
Events with a (2+1) jet topology in deep-inelastic scattering at HERA are
studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet
events has been determined with the modified JADE jet algorithm as a function
of the jet resolution parameter and is compared with the predictions of Monte
Carlo models. In addition, the event rate is corrected for both hadronization
and detector effects and is compared with next-to-leading order QCD
calculations. A value of the strong coupling constant of alpha_s(M_Z^2)=
0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is
extracted. The systematic error includes uncertainties in the calorimeter
energy calibration, in the description of the data by current Monte Carlo
models, and in the knowledge of the parton densities. The theoretical error is
dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.
Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA
The multiplicity structure of the hadronic system X produced in
deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic
system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY
vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant
mass M_X of the system X. Results are presented on multiplicity distributions
and multiplicity moments, rapidity spectra and forward-backward correlations in
the centre-of-mass system of X. The data are compared to results in e+e-
annihilation, fixed-target lepton-nucleon collisions, hadro-produced
diffractive final states and to non-diffractive hadron-hadron collisions. The
comparison suggests a production mechanism of virtual photon dissociation which
involves a mixture of partonic states and a significant gluon content. The data
are well described by a model, based on a QCD-Regge analysis of the diffractive
structure function, which assumes a large hard gluonic component of the
colourless exchange at low Q^2. A model with soft colour interactions is also
successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first
submission - omitted bibliograph
Searches at HERA for Squarks in R-Parity Violating Supersymmetry
A search for squarks in R-parity violating supersymmetry is performed in e^+p
collisions at HERA at a centre of mass energy of 300 GeV, using H1 data
corresponding to an integrated luminosity of 37 pb^(-1). The direct production
of single squarks of any generation in positron-quark fusion via a Yukawa
coupling lambda' is considered, taking into account R-parity violating and
conserving decays of the squarks. No significant deviation from the Standard
Model expectation is found. The results are interpreted in terms of constraints
within the Minimal Supersymmetric Standard Model (MSSM), the constrained MSSM
and the minimal Supergravity model, and their sensitivity to the model
parameters is studied in detail. For a Yukawa coupling of electromagnetic
strength, squark masses below 260 GeV are excluded at 95% confidence level in a
large part of the parameter space. For a 100 times smaller coupling strength
masses up to 182 GeV are excluded.Comment: 32 pages, 14 figures, 3 table
Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant
Jet event rates in deep inelastic ep scattering at HERA are investigated
applying the modified JADE jet algorithm. The analysis uses data taken with the
H1 detector in 1994 and 1995. The data are corrected for detector and
hadronization effects and then compared with perturbative QCD predictions using
next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2)
is determined evaluating the jet event rates. Values of alpha_S(Q^2) are
extracted in four different bins of the negative squared momentum
transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the
renormalization group equation to these several alpha_S(Q^2) values results in
alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys.
J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4
- …