5,075 research outputs found

    The Effect of Zonally Asymmetric Ozone Heating on the Northern Hemisphere Winter Polar Stratosphere

    Get PDF
    [1] Previous modeling studies have found significant differences in winter extratropical stratospheric temperatures depending on the presence or absence of zonally asymmetric ozone heating (ZAOH), yet the physical mechanism causing these differences has not been fully explained. The present study describes the effect of ZAOH on the dynamics of the Northern Hemisphere extratropical stratosphere using an ensemble of free-running atmospheric general circulation model simulations over the 1 December - 31 March period. We find that the simulations including ZAOH produce a significantly warmer and weaker stratospheric polar vortex in mid-February due to more frequent major stratospheric sudden warmings compared to the simulations using only zonal mean ozone heating. This is due to regions of enhanced Eliassen-Palm flux convergence found in the region between 40°N–70°N latitude and 10–0.05 hPa. These results are consistent with changes in the propagation of planetary waves in the presence of ZAOH predicted by an ozone-modified refractive index

    Absolute continuity and spectral concentration for slowly decaying potentials

    Get PDF
    We consider the spectral function ρ(μ)\rho(\mu) (μ0)(\mu \geq 0) for the Sturm-Liouville equation y+(λq)y=0y^{''}+(\lambda-q)y =0 on [0,)[0,\infty) with the boundary condition y(0)=0y(0)=0 and where qq has slow decay O(xα)O(x^{-\alpha}) (a>0)(a>0) as xx\to \infty. We develop our previous methods of locating spectral concentration for qq with rapid exponential decay (JCAM 81 (1997) 333-348) to deal with the new theoretical and computational complexities which arise for slow decay

    Extensions of a New Algorithm for the Numerical Solution of Linear Differential Systems on an Infinite Interval

    Full text link
    This paper is part of a series of papers in which the asymptotic theory and appropriate symbolic computer code are developed to compute the asymptotic expansion of the solution of an n-th order ordinary differential equation. The paper examines the situation when the matrix that appears in the Levinson expansion has a double eigenvalue. Application is made to a fourth-order ODE with known special function solution

    Screening for health risks: A social science perspective

    Get PDF
    Health screening promises to reduce risks to individuals via probabilistic sifting of populations for medical conditions. The categorisation and selection of 'conditions' such as cardiovascular events, dementia and depression for screening itself requires prior interpretive labour which usually remains unexamined. Screening systems can take diverse organisational forms and varying relationships to health status, as when purported disease precursors, for example 'pre-cancerous' polyps, or supposed risk factors, such as high cholesterol themselves, become targets for screening. Screening at best yields small, although not necessarily unworthwhile, net population health gains. It also creates new risks, leaving some individuals worse-off than if they had been left alone. The difficulties associated with attempting to measure small net gains through randomised controlled trials are sometimes underestimated. Despite endemic doubts about its clinical utility, bibliometric analysis of published papers shows that responses to health risks are coming to be increasingly thought about in terms of screening. This shift is superimposed on a strengthening tendency to view health through the lens of risk. It merits further scrutiny as a societal phenomenon

    Structure maps for hcp metals from first principles calculations

    Full text link
    The ability to predict the existence and crystal type of ordered structures of materials from their components is a major challenge of current materials research. Empirical methods use experimental data to construct structure maps and make predictions based on clustering of simple physical parameters. Their usefulness depends on the availability of reliable data over the entire parameter space. Recent development of high throughput methods opens the possibility to enhance these empirical structure maps by {\it ab initio} calculations in regions of the parameter space where the experimental evidence is lacking or not well characterized. In this paper we construct enhanced maps for the binary alloys of hcp metals, where the experimental data leaves large regions of poorly characterized systems believed to be phase-separating. In these enhanced maps, the clusters of non-compound forming systems are much smaller than indicated by the empirical results alone.Comment: 7 pages, 4 figures, 1 tabl

    Inferring Species Trees Directly from Biallelic Genetic Markers: Bypassing Gene Trees in a Full Coalescent Analysis

    Get PDF
    The multi-species coalescent provides an elegant theoretical framework for estimating species trees and species demographics from genetic markers. Practical applications of the multi-species coalescent model are, however, limited by the need to integrate or sample over all gene trees possible for each genetic marker. Here we describe a polynomial-time algorithm that computes the likelihood of a species tree directly from the markers under a finite-sites model of mutation, effectively integrating over all possible gene trees. The method applies to independent (unlinked) biallelic markers such as well-spaced single nucleotide polymorphisms (SNPs), and we have implemented it in SNAPP, a Markov chain Monte-Carlo sampler for inferring species trees, divergence dates, and population sizes. We report results from simulation experiments and from an analysis of 1997 amplified fragment length polymorphism (AFLP) loci in 69 individuals sampled from six species of {\em Ourisia} (New Zealand native foxglove)

    Environmental tolerances and drivers of deepwater seagrass change: implications and tools for coastal development management

    Get PDF
    While research has focused on shallow water coastal seagrasses over the last 20 years, little is known of the ecological role, tolerances and drivers of their deepwater (>10) counterparts. Within the Great Barrier Reef World Heritage Area, deepwater seagrasses are estimated to occupy more than 35,000 km2 of the reef lagoon. These deepwater meadows are often within the footprint of port and shipping activity where dredging, associated plumes and ship movements are major threats to their long term survival. We present initial findings from an ongoing research program to determine the drivers of seasonal and inter-annual change in deepwater tropical seagrasses. Seagrass abundance, seed bank status and recruitment, productivity, irradiance and temperature along with detailed spectral profiles have been measured in three geographically distinct deepwater seagrass meadows since early 2012. Manipulative lab experiments were initiated in mid-2013 to assess the adaptive photophysiological characteristics of the plants. This research will identify key environmental cues which will be used in developing local management strategies for mitigating coastal developmental impacts along the Great Barrier Reef
    corecore