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Abstract 

We consider the spectral function p(#) (/z >/0) for the Sturm-Liouville equation y" + ( 2 - q ) y  = 0 on [0,c~) with the 
boundary condition y ( 0 ) =  0 and where q has slow decay O(x -a) (a > 0) as x ~ cx~. We develop our previous methods 
of locating spectral concentration for q with rapid exponential decay (this Journal 81 (1997) 333-348) to deal with the 
new theoretical and computational complexities which arise for slow decay. (~) 1998 Elsevier Science B.V. All rights 
reserved. 
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1. I n t r o d u c t i o n  

In  a recent  p a p e r  [5], w e  gave  a n e w  fo rmu la  

p'(l~) = rc-lsexp ( - s - '  f o ~q (x ) s i n 2 0 (x ,p )dx )  

for  the der iva t ive  o f  the spectra l  funct ion  assoc ia ted  wi th  the S t u r m - L i o u v i l l e  equa t ion  

y"(x)  + {2 - q(x)}y(x)  = 0 (0 <<, x < oo) 

and the Dir ichle t  b o u n d a r y  condi t ion  

y ( 0 )  = 0, 
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the formula applying to the situation where 

q(x)  E L(O,c¢).  (1.4) 

In (1.1), # > 0,s = v/-fi and O(x, # )  is the solution of  the first-order differential equation 

O'(x, # ) = s - s - l q ( x  ) sin 20(x, # ), ( 1.5 ) 

such that 

0(0,#) = 0. (1.6) 

Also, if (1.3) is replaced by the usual general condition 

y(0) cos ~ + y '(0) sin ~ = 0 (0 < ~ < =), 

the initial factor s in (1.1) is replaced by 

SCSC 2 0C(S 2 + cot 2 ~)-1 

and (1.6) is replaced by 

0(0,#) = - t a n - l ( s t a n ~ )  (-r~ < 0(0,#) < 0). 

In this paper however, we keep to (1.3) purely for simplicity. 
Following [5, 18] (see also [4]), we say that the problem (1.2)-(1.3) exhibits spectral concen- 

tration at a point #0 ( >  0) if p' has a local maximum at /2o. Then p itself has a relatively sharp 
increase at #0. In [5] we used (1.1) to develop computational procedures, based on (1.5) and (1.6), 
for locating spectral concentration points p0 with the emphasis on potentials q which decay rapidly 
as x ~ c¢. In particular, we identified a transitional property of O(x,#)  as # increases through Po 
which provides a sensitive test of  even slight spectral concentration [5, Sections 2-3]. This property 
also features in this paper, and we give details of  it later at the end of  Section 4. 

A typical example considered in [5, Section 3.1] and suggested by [20, Example 166] is 

q(x)  = - ce -X /4cosx  (c > 0) (1.7) 

with exponential decay. However, in [5, Section 5], we pointed out that our procedures are less 
reliable in cases of  slower decay such as 

q(x)  = -c (1  + X) -a C O S X  (1.8) 

with a > 1, and we also raised the further question of  what can be said when 0 < a ~< 1, in which 
case (1.4) fails and it is no longer clear that (1.1) is available. 

In this paper, we deal with these two outstanding matters. First, in Section 2, we show that (1.1) 
continues to hold in certain situations where (1.4) fails and q is only conditionally integrable on 
(0, c~). Certain values of  # have to be avoided because of  the possibility of embedded eigenvalues 
and discontinuities in p but, in # - intervals which avoid these values, the spectrum is absolutely 
continuous. Then, in Section 3, we show how to extend the computational procedures in [5] to locate 
reliably spectral concentration points for slow-decay examples such as (1.8), with a ~< 1 allowed. 

Finally in this introduction, we note two other approaches to spectral concentration. The software 
package SLEDGE [9, 19, 20] replaces q in (1.2) by an approximating step-function 4 over a large 
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interval (0,b). It then computes the spectral function p(t~,b,/~) for (1.2) with ~ and the boundary 
conditions (1.3) and y(b) = 0. When refinements of  ~ and b lead to a stable output, the step- 
function p(~, b ,#)  provides an approximation to p(/~) to within a prescribed tolerance. SLEDGE is 
not restricted to (1.4) but, when more explicit formulae such as (1.1) and (1.5) are available, these 
formulae provide a more sensitive means of  detecting spectral concentration [5]. 

The other approach to spectral concentration lies in the wider theoretical context of quantum 
resonances and spectral stability [17]. The resonances are nonreal singular spectral points and, in a 
future paper, we intend to develop the connection between these nonreal points and the real spectral 
concentration points found in this paper and in [5]. 

2. Absolute continuity of  the spectrum 

The theory from which (1.1) is derived in [5] was developed in the original work of  Titch- 
marsh [23, Section 5.7] and Weyl [24, p. 264]. This theory uses the fact that, subject to (1.4), 
there are solutions of  (1.1) which together with their derivatives are asymptotic to exp(±ixx/~) and 
±ix/-2exp(dzixx/~) as x --~ oo. More recently, the existence of  solutions with these or similar asymp- 
totic forms, irrespective of  (1.4), provides an application of  the subordination theory of  Gilbert et 
al. [13, 21] and leads to the absolute continuity of p(#)  in appropriate intervals. Such asymptotic 
forms are obtained by transforming (1.2) into a first-order differential system to which the Levinson 
asymptotic theorem [6, Section 1.3] is applicable, and the necessary transformation methods were 
developed by Harris, Lutz and Eastham [14-16, 6]. In particular, Behncke [1-3] used the transfor- 

provided mations in [15] to establish the absolute continuity for potentials such as (1.8) when a > 
that certain resonance values of  # are avoided. In this section, we use the transformation due to 
Eastham and McLeod [6, Sections 4.6--4.7], [12] to both extend this result and establish (1.1) for 
all a > 0. 

In [6, (4.1.8)] (1.2) is considered with 2 = 1 and, therefore, some minor changes are required in 
the transformation theory as presented in [6, Section 4.6]. As in [6, Section 4.1], we take q to have 
the form 

q(x) = ~(x)p(x), 

where p has period 2rt and 

0 (x oo), e L(0, 

Also, 

~(X) ~ LM(O, o0), ~(X) E LM+I(0, OO) 

for some integer M (~> 1). Thus ~(x) = (1 + x) -a 
appropriate formulation of  (1.2) as a system is 

W'(x) = {iAo + R(x)} W(x) 

where, as in [6, Section 4.1], 

Ao = d g ( v ~ , - v / 2 ) ,  R(x) = -i~(x)p(x)Dl2 

(2.1) 

(2.2) 

(0 < a ~< 1 ) is the simplest example. The 

(2.3) 

(2.4) 
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with D 1 1 = d g ( ~ , - i )  and f2 having all entries unity. The connection between y and W is 

(y (1 1) 
y' = i v ~ - i v ~  W. (2.5) 

The resonance set ~ in [6, (4.1.18)] is now replaced by 

~r = {NE/4;N = 1,2,...}. (2.6) 

We can now proceed as in [6, Lemma 4.6.1] with a transformation 

W = (exp((P1 + ~2p2 -~-... 4- ~MPM)}Z, (2.7) 

where the matrices Pm have period 2rt, dgPm = 0, and M is as in (2.2). This takes (2.3) into 

Z' = (iA0 + ~A1 + ... + ~MAM + S)Z, (2.8) 

where S E L(0, oo) and A,, is diagonal with period 2ft. Here 2 is excluded from the set o" in (2.6). 
Further, since R has trace zero in (2.4), it follows that 

tr Am = - t r  P'm = O (m >>, 1) 

as in [6, Lemma 4.9.2 (i)]. Thus Am has the form 

Am = dg(2 (m), --2(m)). 

Finally, when 2 is real and positive, the conditions of  [6, Theorem 4.6.1] are satisfied by (2.3) and 
(2.4), and then the Am are all pure imaginary. 

The method used in [23, Section 5.7] for obtaining the Titchmarsh-Weyl m(2) function and the 
spectral function p(kt) can be adapted to the situation which we have now in (2.1)-(2.8). We note 
that (2.7) has the form 

W = (I + Q)Z, (2.9) 

where Q(x) --- o(1) (x ~ oc), and we choose X so that (I + Q)- l  exists in [X, oo). We also note 
that (2.8) is 

z '  = (A + S)Z, (2.10) 

where A has the form 

A = dg(v , -v )  (2.11) 

with 

v = ix/~ + o(1) (x --* ~ ) .  

Further, v is pure imaginary when 2 is real and positive. 
The usual integral form of  (2.10) is 

Z(x)  -- ~ ( x ) Z ( X )  + q~(x)q~-l(t)S(t)Z(t)dt  

(2.12) 
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with 

• (x)=exp{dg(~xXv(t)dt,-/xv(t)dt)). (2.13) 

Then, by (2.9), the solutions of  (2.3) satisfy 

W(x) = {I + Q(x)}qb(x){I + Q(X)} -1 W(X) 

£ + { I  + O(x)} ~(x)rI)-l(t)S(t)W(t)dt, (2.14) 

where 

= s ( I  + Q) - '  (2.15) 

1 it follows immediately from (2.12)--(2.15) If  2 and v/2 satisfy 0 ~< arg2 < r~ and 0 ~< argv'~ < grc, 
and a Gronwall inequality that W(x)exp (ffr v(t)dt) is hounded on [X, oe). To use this property in 
the integral term in (2.14), we define/1 = dg(1,0) and/2 = dg(0, 1 ) in order to split the two entries 
in • in (2.13). Then, by (2.14), we have 

( £ )  W(x) = {/2B(2) + o(1)}exp - v(t)dt (x --~ ~)  

when 2 is nonreal, where 

/ : ( 1  ) B(2) = {I + Q(X)} -l W(X) + exp v(u)du S(t)W(t)dt 

(cf. [23, (5.7.5)-(5.7.8)]).  Also, when 2 has a real and positive value #, (2.14) again gives 

W(x)= IlA(.)exp (fXv(t)dt) 

+I2B(lt)exp ( -  JxV(t)dt ) + o(1), 

where v is now pure imaginary and A(/~) is the same as B(/~) but with - v  instead of  v (cf. [23, 
(5.7.2)-(5.7.3)]).  Finally, in terms of  the first component a(/~) of  A(#) and the second component 
b(2) of  B(2), the transformation (2.5) back to y gives 

( / ; )  y(x) = {b(2) + o(1)}exp - v(t)dt (2.16) 

for 2 nonreal and, when 2 = p, 

y(x) = a(#)exp ( fxXv(t)dt) + b(#)exp ( -  fxXV(t)dt) + o(1), 

y'(x) = ix/-~a(lt)ex p ( fxXv(t)dt) - ix/~b(#)exp ( -  fx x v(t)dt) + o(1 ). (2.17) 

We now have the same type of  asymptotic formulae as in [23, Section 5.7], from which (1.1) 
follows as in [5]. We indicate the details briefly, the only proviso being that /~ ~ rr in (2.6) as 
already mentioned. 
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Let y~(x, 2) and y2(x, 2) be the solutions of  (1.2) which satisfy the initial conditions 

y l ( 0 , 2 ) = l ,  y l ' ( 0 , 2 ) = 0 ,  y2(0,)].)=0, y z ' ( 0 , 2 ) = l ,  

and let al,bl,a2,b2 denote the corresponding multipliers as in (2.16) and (2.17). Then Yl + myz C 
Lz(O, e~) gives 

m(2) = -b~(2)/bz(2) (im2 ¢ 0) (2.18) 

as in [23, (5.7.9)]. When 2 = #, Yl and Yz are real-valued and, hence, 

aj(/t) = bj(~) ( j  = 1,2) 

in (2.17). Then W ( y l , y z ) =  1 gives 

im(b-2bl )(/~) = -(4x/-fi) -1 . 

Hence, by (2.18), 

lim im m(2) = {4v/-fi ] bz(p) 12} -t  
2---~# 

= Jim{ctl/2y~(x,#) + l~-'/2y;Z(x,#)}-I 

by (2.17) and (1.1) follows as in [5]. 
Finally in this section, we note that the requirement/~ ~ o- can be relaxed as follows when M = 1 

in (2.2). Let Cn ( - c o  < n < oc) denote the complex Fourier coefficients of  p(x) in (2.1). Then it 
1 2 is shown in [6, Section 4.2] ( see also [7]) that (2.17) continuous to hold when # = ~N for some 

N provided that CN = 0. Thus, altogether, (1.1) is valid 
1. for a l l / t  > 0 when ~ E L(0, oc), 

1 2 for which CN 7 ~ O, when M 1 in (2.2), 2. for all /~ > 0 except those # = ~N = 
3. for # > 0 and ~ ¢ o- when M / >  2 in (2.2). 

3. An integration algorithm 

We aim to compute p' in (1.1) to within a reasonable degree of accuracy such as 10 -5. The error 
in p' is of  course made up of  a number of components: the truncation error due to the approximation 
of  the semi-infinite interval by a finite interval, the error inherent in the solving algorithm of  the 
differential equation and the rounding error due to the rational approximation of  real numbers in 
computer arithmetic. We focus here on the truncation error and rely on the standard theory for 
both the error in the Runge-Kutta algorithm as well as the floating-point numerical software on 
our computer system. The infinite integral in (1.1) is of  course truncated at a suitable value X0. 
However, to achieve a truncation error of  10 -6  in the integrand when, for example, a = 3 in (1.8) 
requires X0 = 10 3, and integration over the large range (0, 10 3 ) is unreliable. The situation is much 
worse for smaller values of  a. In this section, we develop an iterative algorithm which accelerates 
the convergence of  the integral in (1.1) and enables us to cope with potentials such as (1.8) when 
a > 0 .  



B.M. Brown et al./Journal of Computational and Applied Mathematics 94 (1998) 181-197 187 

Guided by the example (1.8), we give the algorithm for the case p ( x ) =  cosx, so that (2.1) is 

q(x) = ~(x) cosx (3.1) 

and ~(x) is as before but with M >~ 0 in (2.2). Our methods also cover the more general situation 
where p(x)  is a finite Fourier series, but the details become more complicated. We require the 
following trigonometric identity, valid for any ~, fl, 0 and x: 

8 COSX sin 2 0 sin(~0 + fix) 

= 2 s in{~0  + (fl + 1 )x} + 2 s in{~0  + (fl - 1 )x} 

- sin{(~ + 2)0 + (fl + 1)x} - sin{(~ - 2)0 + (fl - 1)x} 

- s in{ (~  + 2 ) 0  + (fl - 1)x}  - s in{ (~  - 2 )0  + (fl + 1)x}.  (3 .2)  

This is easily verified, and there is a similar identity with cos(a0 -4- fix) on the left and all cosines 
on the right. 

Next, we require the following integrals over [ 0 , ~ )  with 0 as in (1.1), F E L(0,cx~) and 
F (oc )  = 0: 

I(F, ~, fl) = f F(x )  sin(~0 + fix) dx 

fl) = [ F(x )  cos(~0 -4- fix) dx J(F,  
J 

(3.3) 
P 

K(F,  ~, fl) = J F(x )  cosx sin 2 0 sin(~0 -4- fix) dx 

L(F, ~, fl) = / F(x )  cosx sin 2 0 cos(~0 + fix) dx. 

It follows from (1.5),(3.1) and an integration by parts that 

( ~  + fl)I(F, ~, fl) 

f F sin(~O + ~x)(~O' + fl + ~ - 1 ~  cosx sin 2 0)dx 

= F(O) +J(F ' , c t ,  fl) + ~- 'K(F~,oc ,  fl) (3.4) 

and, similarly, 

( ~  -4- fl)J(F, ~t, fl) = - I ( F ' ,  ~t, fl) -4- as- 'L(F~,  ct, fl). (3.5) 

Finally in these introductory formulae, it follows from (3.2) and (3.4) that 

8K(F,e ,  fl) = 2I(F,~t, f1-4- 1) -4- 2I(F, ct, fl - 1) 

- I ( V, o~ -4- 2, f1-4- 1) - I ( F , e  - 2, fl - 1) 

- I ( F , ~  -4- 2,fl - 1) - I ( F , ~  - 2,fl -4- 1) (3.6) 
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8L(F,~, f l )  = 2 J ( F , ~ , f l +  1) + 2 J ( F , ~ , f l -  1) 

-J(F,o~ + 2, fl + 1) - J ( F , ~  - 2, f l -  1) 

- J ( F , ~  + 2, fl - 1) - J (F ,c~  - 2, fl + 1). (3.7) 

We can now return to the integral in (1.1), which we denote by I0. Then, by (3.1), we can write 

210 = I(~,2, 1) + I ( ~ , 2 , - 1 ) .  (3.8) 

By (3.4) and (3.6), the t w o / - i n t e g r a l s  here can be expressed in terms of  I and J integrals with 
integrands containing 3' and 42. These last integrals converge more rapidly than those in (3.8) for 
cases such as 

~(x) -- (const.)(1 + x)  -a. (3.9) 

Repetition of  the algorithm (3.4)-(3.7) accelerates the convergence by introducing integrands with 
higher derivatives and higher powers of  ~. 

Certain values of  # have to be excluded to avoid a zero factor ~s + fl on the left-hand side of  
(3.4) and (3.5). Thus, with ~ = 2 and fl -- - 1  in (3.8), we exclude 

(3.10) 

at the first implementation of  the algorithm. At the next application of  the formulae (3.4) and (3.5) 
the value 

# = 1 (3.11) 

is also excluded and, at the third application of  (3.4) and (3.5), the additional values 

± ± __9 _9 (3.12) 
36 '  16' 16' 4" 

We note that there is an overlap of  these values and the N2/4 values discussed at the end of  Section 
2 for the validity of  (1.1) when M / >  1. 

4. Implementing the algorithm 

In this section we show how the integration algorithm from Section 3 is used to identify points 
of  spectral concentration for potentials of  the form 

q(x)  = -c (1  + x) -a cosx (4.1) 

given by (3.1) and (3.9), where c > 0 and a > 0. The algorithm is implemented using both symbolic 
methods and numerical approximations. 

We recall from (3.8) that the integral which appears in the formula for p' is the sum of two 
integrals I(¢, 2, 1 ) and I(~, 2 , -  1 ). The first part of  the algorithm consists of  a procedure to improve 
the convergence of  these integrals. We focus first on the case a ~> 2 and then comment on the 
procedure that we have been forced to adopt for smaller values of  a. 

First an acceptable order of  convergence e is decided upon: we have chosen e = x -6. A purpose 
written Mathematica code is used to repeatedly apply the integration by parts formulae (3.4)-(3.7) to 
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the integrals whose integrands are larger then e. Starting with the integrals 1(4, 2, 1 ) and 1 (4 ,2 , -1  ), 
the integration by parts formulae generate integrals of the types LJ, K,L (cf. (3.4)) whose integrands 
have smaller order than the integrand in (1.1) together with terms that do not involve the variable x. 
This procedure is repeated until all integrands have order less than or equal to e. Thus Mathematica 
is used to generate a symbolic formula which consists of  terms that do not depend upon x, denoted 
by COaL together with a sum of  integrals of  type (3.4). Next a Mathematica code is written to parse 
the formula and reconstruct the integrands. The symbolic formula is finally converted into a Fortran 
77 function which for convenience we denote by F(x,#) .  

The next task is to evaluate the integral (1.1) numerically from the improved integrand for each 
value of  # under consideration. As the integral I0 depends upon 0, which itself is a solution of the 
differential equation (1.5), this is done by solving the system 

O(x, lt) = s - s - lq (x )s in  2 0 
(4.2) 

over [0,X] for some large X, where I0(x,#) is the integral over (0,x) in (1.1), subject to the initial 
conditions 

Io(O, ) = = 0,  

typically X =  100 has been used in our example. 
There are several practical difficulties encountered in performing the above tasks. First, the im- 

provements in the convergence of  the integrals brought about by the integration by parts generate a 
large number of  integrals LJ,  K,L as indicated by the right-hand sides of  (3.6) and (3.7). Numeri- 
cal inaccuracies do not allow us at the moment to improve the integrands beyond a certain point. 
The inaccuracies arise from the K- and L-type integrals when we attempt to improve the integrand 
beyond 43. The combined integrand F(x, I~) therefore involves 

4 ' ' ,  ¢4'", ¢4", ~2~,, 4'2, 43 (4.3) 

1 and 1 as stated in (3.10) and (3.11). We have also tried to and the excluded values of # are 
perform the numerical integration by extending the system of  differential equations (4.2) to one in 
which each entry is only one of the integrands of  I ,J ,K,L  together with the defining equation for 0. 
However this procedure, which has required a more sophisticated parsing routine to be written, has 
produced no significant improvement in the results. 

When a ~> 2, the order of  convergence e = x -6 is achieved by the F(x ,#)  indicated by (4.3). 
When a < 2, we continue to use the same F(x, I.t) but with a consequent increase in the truncation 
error. However, the increased error leads to two complications which become more serious as a 
decreases. The first complication is that (1.1) only gives the approximate location of  the spectral 
concentration points. The second and more serious complication is that spurious maxima of p' are 
produced, the more so as a decreases, and therefore it is necessary to identify the true maxima. We 
resolve these difficulties by using a transitional property of  O(x,l~) which we now describe. 

As reported in [4, Section 2] ( see also [5]), spectral concentration at a point/~0 is indicated by 
a certain transitional behaviour of  O(x,l~) as # increases through #o. Let (x~,x2) be an interval in 
which the Sturm-Liouville coefficient # -  q(x) < 0 and/~' and/~" be suitably close to a point of  #0 
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of spectral concentration with #' < #0 < #". Then we expect the integral in (1.1) to be large and 
negat ive- -and  therefore producing spectral concentrat ion-- i f  

(N 4- ½ )n < O(x, #o) < (N 4- 1 )n (4.4) 

in (xl,x2), where N(/> 0) is an integer. We find that, particularly in situations of  sharp concentration, 
(4.4) is realised with the following features: 
1. O(x,#') and O(x,#") are close together for 0 ~< x ~< xl with their values at xl close to (N + ½)ft. 

3 )7~. 2. O(x,#")-  O(x,#') is close to n for x to the right of  x2, with 0(x ,# ' )  close to (N + 
3. O(x, #o) is close to (N + 1)n. 
Thus the graph of O(x,#) undergoes a rapid transition in (x~,x2) as # increases from #' to #". The 
transitional behaviour is illustrated by the graphs in the next section. 

We retum now to F(x ,#)  in (4.3) and the case a < 2. The first complication, conceming the 
approximate location of  spectral concentration points, is resolved by using this approximate location 
as the starting point of  a search range for # within which (1.5) is solved numerically for O(x,#). 
Then the points #0 at which the transition occurs can be located more precisely. We can also use the 
transition property of  O(x, #) even when a >i 2 to verify independently that true spectral concentration 
points obtained precisely as the local maxima of p' are not artifacts of  our methods. At the same time, 
any apparent maxima which are not associated with the transition property are rejected as spurious. 
We find that, as a decreases, the number of  spurious maxima increases significantly making the task 
of  rejection a major (but unseen) part of  our work. 

Finally in these comments, we note that there is a further complication as a result of  the excluded 
values # = ¼, 1, ~6,--- in (3.10)-(3.12). Although it is clear from the integration by parts formulae 
(3.4)-(3.7) that our methods of  evaluating p' must exclude these points, the numerical realisation 
of  our algorithm produces unreliable results in neighbourhoods of these points. Again we test these 
neighbourhoods for the appearance of  the transitional behaviour of 0(x,#). We refer also to [4, 
Section 6] for a similar use of O(x, #) in a different but related situation where a direct formula for 
p' poses difficulties. 

In the case of (4.1), the intervals (xl,x2) in (4.4) are approximately 

((2r 4- ½)n,(2r 4- ~)n) (r = O, 1,2,...). (4.5) 

We then denote #o in (4.4) by 

#(c,N) (r = 0), v(c,N) (r = 1), ~(c,N) (r = 2) 

and, in the next section, we record our findings concerning the location of these points when c( > 0) 
is regarded as a parameter. We shall also comment on higher values of  r as appropriate. 

5. Examples 

5.1. Example: a = 2 in (4.1) 

Here q(x) is L(0, e~) and (1.1) is valid for all # > 0. We apply the algorithm as described in 
i and 1 in the computation of  p'(#). In Table 1 (4.3) and we have to exclude values of # near to 
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Table 1 
a = 2  

Fig. 1. 0 graph for #(49.26, 1) = 0.25. 

c #(c,0) /~(c, 1) #(c,2) /~(c, 3) v(c, 3) 

2 0.45 
7 0.26 2.05 
9 0.08 2.41 

20 2.10 
30 1.87 5.28 
40 1.29 5.51 
50 0.15 5.10 
60 4.81 
70 4.73 
80 4.45 

100 3.11 
120 0.80 
125 0.10 

0.68 
0.72 

9.75 0.70 
9.95 0.67 
9.26 0.60 
8.9 0.52 
8.84 0.49 

we list the spectral concentration points which we have located as giving local maxima of  p'(It) 
i and 1 by identifying the except that, as mentioned in Section 4, we have located points near to 

value o f  p which is associated with the transitional property of  O(x, ~). Thus, for example, Fig. l 
gives the graphs o f  O(x, # )  which identify /~(49.26, 1 ) -- 0.25 and provide part of  the evolution of  
p(c, 1 ) as c varies which is summarised in the second column of  Table 1. We point out that the 
graphs represent 0 (mod x), whence the repeated cut-offs at the ordinate ft. 

When c has the particular value 122.1, we find that 

/~(c,2) = v(c,3) = 0.51. 

Thus, the two local maxima of  p' arising from #(c,2)  and v(c, 3) coalesce or, equivalently, two 
different intervals (xl,x2) ( with r = 0 and r = 1 ) simultaneously make relatively large contributions 
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to the integration in (1.1). One result of  this coalescence is that v(c,3) becomes v(c,4) when 
c > 122.1. Thus, the last-line entry 0.49 in Table 1 is in fact v(125,4). 

5.2. Example:  a = 1 in (4.1) 

1 Now, M -- 1 at the end of  Section 2, and (1.1) is valid for all p > 0 except /t = ~. We have 
followed the procedure for a < 2 as described in Section 4, in which the excluded values are p = 
(again) and # = 1. We find that spectral concentration points occur in greater profusion than for 
a = 2, and our results for c ~< 100 are given in Tables 2 and 3. Coalescing points occur as follows: 

#(c, 1 ) = v(c, 3) -- 1.98, 

#(c, 1 ) = ~(c, 4) = 0.53, 

#(c,2)  = v(c,5) = 4.02, 

(c = 24.25), 

(c = 31.2),  

(c = 64.6) (5.1) 

as  w e l l  a s  

p(c,3)  = v(c, 8 ) =  10.06, (c = 106). 

As c increases through these respective values, the oscillation number N for v(c ,N)  or ~(c,N) 
increases by one, because of  the transition n in the values of  0 caused by the p spectral concentration 
points. This increase is indicated at the tops of  columns in Table 3. Also, in Fig. 2, we give the 
0-graphs which show the transitional behaviour twice to illustrate the coalescence of  p(c,2)  and 
v(c, 5) when c -- 64.6. 

Table 2 
a - - I  

c ~(c,0) #(c, 1) #(c,2)  p(c, 3) p(c,4)  

2 
3 
4 
5 
6 

10 
15 
20 
25 
30 
40 
50 
60 
70 
80 
90 

100 

0.5 
0.48 
0.41 
0.26 
0.03 

3.05 
2.73 
2.68 
2.68 
2.76 
2.97 
2.61 
1.85 
0.80 

6.77 
6.81 
6.84 
7.09 
7.36 
7.35 
6.43 
4.89 
2.89 
1.75 
1.55 
1.31 

12.51 
12.73 
12.82 
13.36 
13.90 
13.92 
13.36 
12.35 
11.01 

18.38 
20.41 
20.55 
20.79 
21.39 
22.06 
22.47 
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Table 3 
a = l  

c v(c, 2) v(c, 3/4) v(c, 5/6) v(c, 8) ~(c,4/5) 

2 
3 
4 
5 
6 

10 
15 
20 
25 
30 
40 
50 
60 
70 
80 
90 

100 

0.70 
0.75 
0.72 
0.59 
0.41 
0.14 

2.22 0.69 
2.06 0.64 
2.05 4.05 0.57 
1.83 4.10 0.34 
1.46 4.15 0.19 
1.00 4.08 0.04 
0.43 3.88 

3.60 
3.24 
2.82 10.14 

i i 

'mu=4.07' - . . . .  

'mu=3.97' - -  
' m u = 4 . 0 2 ' - - - -  

, ' : ,~ 

i.,7 
i I r I I ~1 

0 2 4 6 8 10 12 14 

Fig. 2. 0 graphs for #(64.6,2) = v(64.6,5) = 4.02. 

1 5.3. Example." a = ~ in (4 .1)  

We have intimated in Sections 2 and 4 that slow decay spawns theoretical and computational 
complexities, the latter including the task o f  segregating the large number o f  spurious and actual 
local maxima o f  p'.  This task is expensive in computer  time and, therefore, we have restricted the 
range o f  c in this part o f  our investigation to 0 < c ~< 30. Our findings for /~, v and ¢ points are 
summarised in Table 4, in which figures are given to more than two decimal places when necessary 
to distinguish between closely situated points. 
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Table 4 
1 a = ~  
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c p(c, 0) #(c, 1) #(c, 2) v (c , l )  v(c, 2) v(c, 3 \4)  ~(c,2) ~(c, 3) ~(c,4) ¢(c, 5) 

2 0.61 0.56 

3 0.50 0.487 0.73 0.4869 
4 0.26 0.72 

6 0.575 1.83 
8 3.49 0.33 2.08 

10 3.61 0.09 2.11 
15 3.11 1.842 
20 2.0 8.82 1.2986 
25 0.51 9.02 0.59 
30 8.72 

0.62 
0.66 0.78 
0.569 0.71 
0.331 0.58 1.85 

2.01 
1.841 
1.2984 

5 , l i , i i 

0 5 1 0  1 5  2 0  2 5  

1 Fig. 3. 0 graphs for a = i ,  c = 3. 

, m u = 0 . 5 1  ' - -  
' m u = 0 . 4 8 8 5 '  - - - -  

' m u = 0 . 4 8 7 '  - . . . .  

' m u = 0 . 4 8 6 8 5  . . . . . . . .  

' m u = 0 . 4 8 6 8 1 '  - . . . .  

/ s : 

, ; '  - : ]  :'." / 
','," .... q" , 

f :  i J 

! /  

: )  V I 

30 

i.~ ! 

i: i 

i: I 

i 

35 

In particular, we find that there are two values of  c and # in whose neighbourhoods several very 
close (but apparently not coalescing) points of  spectral concentration exsist. The values are 

c - - 3 ,  It----0.49; c = 5 . 5 ,  # = 0 . 6 6 .  

In the case of  c = 3, for example, we have evidence for the existence of  at least seven such spectral 
concentration points, corresponding to 0 ~< r ~< 6 in (4.5). In Fig. 3, we exhibit this evidence for 
0 ~< r ~< 4. The figure shows 0-graphs  for a decreasing sequence of  values of  It (all close to 0.49) 
where the transition occurs for r = 0, 1,2, 3, 4 in turn. We make a further comment on this matter 
in Section 6.3 below. 

For c in the stated range (0,30) we have identified one pair of  coalescing points which, as 
in Section 5.2, are associated with a change in the oscillation number N, as follows: /t(c, 1) = 
v(c,3) = 0.67 (c = 24.5). Further, in addition to what is reported in Table 4, we have found that, 
for 15 ~< c ~< 24.5, there is a v(c,4) which is almost identical to It(c, 1). Thus, for c in this range, 
we have a spectral concentration point which enjoys contributions from both r = 0 and r = 1 in 
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1 and it poses the question (4.5). This linkage between # and v points is a new feature for a = 
whether there is a theoretical explanation. 

6. Concluding remarks 

6.1. Absence o f  spectral concentration 

In [5, Section 5], we made the following conjecture concerning the appearance of spectral con- 
centration for (1.2) and (1.3) when q(x) has the form cQ(x) (c > 0) such as we have in (1.7), 
(1.8) and (4.1). 

Conjecture 6.1. Let Q(x)  < 0 & some &terval (0,x0). Let Q(x) change sign one or more times 
as x increases with Q(x) finally decaying to zero as x ~ cx~ and Q(x) E L(O, cx~). Then there is 
a number Co ( >  O) such that spectral concentration does not appear for  any I~ > 0 when c lies in 
the range (0, c0). 

For the example (1.7) we showed in [5] that the conjecture is true with 0.28 < Co ~< 0.29 and, 
more generally, an affirmative answer to the conjecture has been given recently for the special case of  
(2.1) in which x¢(x) is L(0, ecz). Thus (4.1) is covered provided that a > 2. The conjecture remains 
undecided when 1 < a ~< 2 in (4.1), although our computational findings for a = 2 indicate that Co 
exists with 1.0 < Co ~< 1.1. 

6.2. More general potentials 

There is no difficulty, in principle, in extending our methods for (2.1) to potentials which are a 
finite sum 

L 

q(x) = ~ ¢t(x)pl(x)  (6.1) 
1 

and the pl(x)  have different periods col, provided that the cot are mutually commensurable. The pt(x)  
would then all have a common basic period co, and the set o- in (2.6) is modified to 

~r = {UZrtz/co2;N = 1,2,...}. (6.2) 

However, in the absence of  a special form such as (2.1) or (6.1), it is no longer clear what can be 
said, in general, about the absolutely continuous nature of p when q fails to be L(0, c~). There is 
no simple exceptional set a such as (6.2) because in [10, Section 4.4], [11, 22] it is shown that, 
given any set of  isolated positive real numbers #, and given a (0 < a < 1), there is a potential 
q(x) = O(x -a) (x --* ~ ) ,  such that the spectral function has discontinuities at the/a,.  

6.3. Higher values o f  r in (4.5) 

We have focused on r = 0, 1,2 in (4.5) in order to establish our computational methods and, 
consequently, we have located mainly /~, v and ~ points of  spectral concentration. Thus, we have 
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largely confined our search for the transitional behaviour of  O(x,l~) to the x- range  (0, 18). There 
remains the question, on which we have touched in the remarks relating to Fig. 3, whether O(x,l~) 
possesses the transitional property also for higher values of  r and, more particularly, whether an 
infinity of  values of  r is involved in this way for some fixed value of  c. Thus we have the theoretical 
question of  whether an infinite set (bounded or unbounded) of  spectral concentration points can exist 
for some c. All that is known is that an unbounded set cannot occur when a > 2 because it is shown 
in [8] that the set of  spectral concentration points is bounded for any q in (1.2) such that xq(x) is 
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