2,288 research outputs found

    Demon-free quantum Brownian motors

    Full text link
    A quantum Smoluchowski equation is put forward that consistently describes thermal quantum states. In particular, it notably does not induce a violation of the second law of thermodynamics. This so modified kinetic equation is applied to study {\it analytically} directed quantum transport at strong friction in arbitrarily shaped ratchet potentials that are driven by nonthermal two-state noise. Depending on the mutual interplay of quantum tunneling and quantum reflection these quantum corrections can induce both, either a sizable enhancement or a suppression of transport. Moreover, the threshold for current reversals becomes markedly shifted due to such quantum fluctuations.Comment: 4 pages 3 figure

    Diffusion Enhancement in a Periodic Potential under High-Frequency Space-Dependent Forcing

    Get PDF
    We study the long-time behavior of underdamped Brownian particle moving through a viscous medium and in a systematic potential, when it is subjected to a space-dependent high-frequency periodic force. When the frequency is very large, much larger than all other relevant system-frequencies, there is a Kapitsa time-window wherein the effect of frequency dependent forcing can be replaced by a static effective potential. Our new analysis includes the case when the forcing, in addition to being frequency-dependent, is space-dependent as well. The results of the Kapitsa analysis then lead to additional contributions to the effective potential. These are applied to the numerical calculation of the diffusion coefficient (D) for a Brownian particle moving in a periodic potential. Presented are numerical results, which are in excellent agreement with theoretical predictions and which indicate a significant enhancement of D due to the space-dependent forcing terms. In addition we study the transport property (current) of underdamped Brownian particles in a ratchet potential.Comment: RevTex 6 pages, 5 figure

    Symmetry of two terminal, non-linear electric conduction

    Full text link
    The well-established symmetry relations for linear transport phenomena can not, in general, be applied in the non-linear regime. Here we propose a set of symmetry relations with respect to bias voltage and magnetic field for the non-linear conductance of two-terminal electric conductors. We experimentally confirm these relations using phase-coherent, semiconductor quantum dots.Comment: 4 pages, 4 figure

    Enhanced Zeeman splitting in Ga0.25In0.75As quantum point contacts

    Full text link
    The strength of the Zeeman splitting induced by an applied magnetic field is an important factor for the realization of spin-resolved transport in mesoscopic devices. We measure the Zeeman splitting for a quantum point contact etched into a Ga0.25In0.75As quantum well, with the field oriented parallel to the transport direction. We observe an enhancement of the Lande g-factor from |g*|=3.8 +/- 0.2 for the third subband to |g*|=5.8 +/- 0.6 for the first subband, six times larger than in GaAs. We report subband spacings in excess of 10 meV, which facilitates quantum transport at higher temperatures.Comment: [Version 2] Revtex4, 11 pages, 3 figures, accepted for publication in Applied Physics Letter

    Multi-directional sorting modes in deterministic lateral displacement devices

    Get PDF
    Deterministic lateral displacement (DLD) devices separate micrometer-scale particles in solution based on their size using a laminar microfluidic flow in an array of obstacles. We investigate array geometries with rational row-shift fractions in DLD devices by use of a simple model including both advection and diffusion. Our model predicts novel multi-directional sorting modes that could be experimentally tested in high-throughput DLD devices containing obstacles that are much smaller than the separation between obstacles

    Resolution of the Landau pole problem in QED

    Get PDF
    We present new numerical results for the renormalized mass and coupling in non-compact lattice QED with staggered fermions. Implications for the continuum limit and the role of the Landau pole are discussed.Comment: 3 pages, talk presented by H. St\"uben at Lattice '97, Edinburg

    A lattice determination of g_A and <x> from overlap fermions

    Full text link
    We present results for the nucleon's axial charge g_A and the first moment of the unpolarized parton distribution function from a simulation of quenched overlap fermions.Comment: Talk presented at Lattice2004(chiral), 4 pages, 4 figure

    Thermal ratchet effects in ferrofluids

    Full text link
    Rotational Brownian motion of colloidal magnetic particles in ferrofluids under the influence of an oscillating external magnetic field is investigated. It is shown that for a suitable time dependence of the magnetic field, a noise induced rotation of the ferromagnetic particles due to rectification of thermal fluctuations takes place. Via viscous coupling, the associated angular momentum is transferred from the magnetic nano-particles to the carrier liquid and can then be measured as macroscopic torque on the fluid sample. A thorough theoretical analysis of the effect in terms of symmetry considerations, analytical approximations, and numerical solutions is given which is in accordance with recent experimental findings.Comment: 18 pages, 6 figure
    • 

    corecore