Rotational Brownian motion of colloidal magnetic particles in ferrofluids
under the influence of an oscillating external magnetic field is investigated.
It is shown that for a suitable time dependence of the magnetic field, a noise
induced rotation of the ferromagnetic particles due to rectification of thermal
fluctuations takes place. Via viscous coupling, the associated angular momentum
is transferred from the magnetic nano-particles to the carrier liquid and can
then be measured as macroscopic torque on the fluid sample. A thorough
theoretical analysis of the effect in terms of symmetry considerations,
analytical approximations, and numerical solutions is given which is in
accordance with recent experimental findings.Comment: 18 pages, 6 figure