20 research outputs found

    Advertising Brochure: The Great Minneapolis Line

    Get PDF
    In this chapter several aspects of the electronic and phonon structure are considered for the design and engineering of advanced thermoelectric materials. For a given compound, its thermoelectric figure of merit, zT, is fully exploited only when the free carrier density is optimized. Achieving higher zT beyond this requires the improvement in the material quality factor B. Using experimental data on lead chalcogenides as well as examples of other good thermoelectric materials, we demonstrate how the fundamental material parameters: effective mass, band anisotropy, deformation potential, and band degeneracy, among others, impact the thermoelectric properties and lead to desirable thermoelectric materials. As the quality factor B is introduced under the assumption of acoustic phonon (deformation potential) scattering, a brief discussion about carrier scattering mechanisms is also included. This simple model with the use of an effective deformation potential coefficient fits the experimental properties of real materials with complex structures and multi-valley Fermi surfaces remarkably well—which is fortunate as these are features likely found in advanced thermoelectric materials

    Thermoelectric performance of n -type (PbTe) 0.75 (PbS) 0.15 (PbSe) 0.1 composites

    Get PDF
    Lead chalcogenides (PbQ, Q = Te, Se, S) have proved to possess high thermoelectric efficiency for both n-type and p-type compounds. Recent success in tuning of electronic band structure, including manipulating the band gap, multiple bands, or introducing resonant states, has led to a significant improvement in the thermoelectric performance of p-type lead chalcogenides compared to the n-type ones. Here, the n-type quaternary composites of (PbTe)0.75(PbS)0.15(PbSe)0.1 are studied to evaluate the effects of nanostructuring on lattice thermal conductivity, carrier mobility, and effective mass variation. The results are compared with the similar ternary systems of (PbTe)1–x(PbSe)x, (PbSe)1–x(PbS)x, and (PbS)1–x(PbTe)x. The reduction in the lattice thermal conductivity owing to phonon scattering at the defects and interfaces was found to be compensated by reduced carrier mobility. This results in a maximum figure of merit, zT, of ∼1.1 at 800 K similar to the performance of the single phase alloys of PbTe, PbSe, and (PbTe)1–x(PbSe)x
    corecore