21 research outputs found

    Effects of the glucolipid synthase inhibitor, P4, on functional and phenotypic parameters of murine myeloma cells

    Get PDF
    This study describes the effects of the glucolipid synthase inhibitor P4, (DL-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol), on various functional and phenotypic parameters of 5T33 murine myeloma cells. Cell recovery was reduced by >85% following incubation of the cells for 3 days in the presence of 4 μM P4 (the IC50 concentration). Both cytostatic and cytotoxic inhibition was observed with tumour cell metabolic activity and clonogenic potential reduced to 42% and 14% of controls, respectively, and viability reduced to 52%. A dose-dependent increase in cells undergoing apoptosis (from 7% to 26%) was also found. P4 induced a decrease in the number of cells expressing H-2 Class I and CD44, and a large increase in cells expressing H-2 Class II and the IgG2b paraprotein. It did not affect surface expression of CD45 or CD54 (ICAM-1). Based on these alterations in tumour cell growth, adhesion molecule expression and potential immunogenicity, it is anticipated that P4 will provide a novel therapeutic approach for the treatment of multiple myeloma. In addition, given that essentially all tumours rely heavily on overexpressed or abnormal glucosphingolipids for growth, development and metastasis, glucolipid synthase inhibitors may prove to be universally effective anti-cancer agents. © 1999 Cancer Research Campaig

    A New Mixed-Backbone Oligonucleotide against Glucosylceramide Synthase Sensitizes Multidrug-Resistant Tumors to Apoptosis

    Get PDF
    Enhanced ceramide glycosylation catalyzed by glucosylceramide synthase (GCS) limits therapeutic efficiencies of antineoplastic agents including doxorubicin in drug-resistant cancer cells. Aimed to determine the role of GCS in tumor response to chemotherapy, a new mixed-backbone oligonucleotide (MBO-asGCS) with higher stability and efficiency has been generated to silence human GCS gene. MBO-asGCS was taken up efficiently in both drug-sensitive and drug-resistant cells, but it selectively suppressed GCS overexpression, and sensitized drug-resistant cells. MBO-asGCS increased doxorubicin sensitivity by 83-fold in human NCI/ADR-RES, and 43-fold in murine EMT6/AR1 breast cancer cells, respectively. In tumor-bearing mice, MBO-asGCS treatment dramatically inhibited the growth of multidrug-resistant NCI/ADR-RE tumors, decreasing tumor volume to 37%, as compared with scrambled control. Furthermore, MBO-asGCS sensitized multidrug-resistant tumors to chemotherapy, increasing doxorubicin efficiency greater than 2-fold. The sensitization effects of MBO-asGCS relied on the decreases of gene expression and enzyme activity of GCS, and on the increases of C18-ceramide and of caspase-executed apoptosis. MBO-asGCS was accumulation in tumor xenografts was greater in other tissues, excepting liver and kidneys; but MBO-asGCS did not exert significant toxic effects on liver and kidneys. This study, for the first time in vivo, has demonstrated that GCS is a promising therapeutic target for cancer drug resistance, and MBO-asGCS has the potential to be developed as an antineoplastic agent

    Evaluation of bioactive sphingolipids in 4-HPR-resistant leukemia cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>N</it>-(4-hydroxyphenyl)retinamide (4-HPR, fenretinide) is a synthetic retinoid with potent pro-apoptotic activity against several types of cancer, but little is known regarding mechanisms leading to chemoresistance. Ceramide and, more recently, other sphingolipid species (e.g., dihydroceramide and dihydrosphingosine) have been implicated in 4-HPR-mediated tumor cell death. Because sphingolipid metabolism has been reported to be altered in drug-resistant tumor cells, we studied the implication of sphingolipids in acquired resistance to 4-HPR based on an acute lymphoblastic leukemia model.</p> <p>Methods</p> <p>CCRF-CEM cell lines resistant to 4-HPR were obtained by gradual selection. Endogenous sphingolipid profiles and in situ enzymatic activities were determined by LC/MS, and resistance to 4-HPR or to alternative treatments was measured using the XTT viability assay and annexin V-FITC/propidium iodide labeling.</p> <p>Results</p> <p>No major crossresistance was observed against other antitumoral compounds (i.e. paclitaxel, cisplatin, doxorubicin hydrochloride) or agents (i.e. ultra violet C, hydrogen peroxide) also described as sphingolipid modulators. CCRF-CEM cell lines resistant to 4-HPR exhibited a distinctive endogenous sphingolipid profile that correlated with inhibition of dihydroceramide desaturase. Cells maintained acquired resistance to 4-HPR after the removal of 4-HPR though the sphingolipid profile returned to control levels. On the other hand, combined treatment with sphingosine kinase inhibitors (unnatural (dihydro)sphingosines ((dh)Sph)) and glucosylceramide synthase inhibitor (PPMP) in the presence or absence of 4-HPR increased cellular (dh)Sph (but not ceramide) levels and were highly toxic for both parental and resistant cells.</p> <p>Conclusions</p> <p>In the leukemia model, acquired resistance to 4-HPR is selective and persists in the absence of sphingolipid profile alteration. Therapeutically, the data demonstrate that alternative sphingolipid-modulating antitumoral strategies are suitable for both 4-HPR-resistant and sensitive leukemia cells. Thus, whereas sphingolipids may not be critical for maintaining resistance to 4-HPR, manipulation of cytotoxic sphingolipids should be considered a viable approach for overcoming resistance.</p

    Impact of central nervous system-directed treatment on competence and adjustment among children in early cancer survivorship

    No full text
    Background: Central nervous system (CNS)-directed treatments can cause long-term academic, social, and emotional difficulties for children with cancer. However, limited research has examined the emergence of problems longitudinally and has often stratified risk by diagnosis alone. Therefore, this study compared competence and adjustment in children, who did and did not receive CNS-directed treatment, over the first 3 years following a cancer diagnosis. Procedure: Mothers, fathers, and children (ages 5–18 years at diagnosis) from 217 families reported on the child's competence (academic, social) and adjustment (anxious/depressed, withdrawn/depressed) near a new cancer diagnosis or relapse and 3 years later. Children were categorized into CNS-directed treatment (n = 112; including cranial radiation, intrathecal chemotherapy, and/or neurosurgery) and non-CNS-directed treatment (n = 105) groups. Results: At enrollment, there were few differences in competence and emotional adjustment among children based on treatment or diagnostic group. At 3 years, mothers and fathers reported poorer social competence for the CNS-directed treatment group, and fathers reported poorer school competence for the CNS-directed treatment group. Over time, father ratings of social competence increased for the non-CNS-directed treatment group, but not the CNS-directed treatment group. While father ratings of academic competence declined for the CNS-directed treatment group, mother ratings declined the most for children diagnosed with a brain tumor. All children demonstrated higher anxious/depressed scores over time. Conclusions: CNS-directed treatment may be a valuable indicator to identify childhood cancer survivors at risk for poor competence during early survivorship. Follow-up screening and supportive services are recommended, as well as additional longitudinal research
    corecore