168 research outputs found

    Practical measures for improving the ecological state of lake Marken using in depth system knowledge

    Get PDF
    For Lake Marken in the Netherlands, high suspended sediment concentrations result in reduced ecological values and prevent goals and standards from being met (Water Framework Directive, Natura 2000). A practical measure to improve the ecology that is currently studied is the construction of sheltered areas in the North West part of Lake Marken. For implementation of this measure, a strategy is being followed that combines in depth system knowledge with stakeholder aspects. In the present paper we will show which knowledge of the underlying physical and ecological processes was needed and how it was applied in the strategy. We used a coupled silt model for Lake Marken to study effects of the structures on hydrodynamics, waves, and sediment. Results of the silt model simulations were interpreted with in depth ecological expert knowledge to assess the ecological impact of the structures. Effects of the considered sheltered areas on transparency and wave- and siltdynamics are limited compared to the scale of the lake. However, these changes give local opportunities for ecology. Its effectiveness may be enhanced by local un-deepening

    Natuurlijk IJsselmeer: ecodynamisch visie IJsselmeer 2100

    Get PDF
    Deze ecodynamische visie laat een palet van potentiële ontwikkelingen voor het IJsselmeer zien: ecodynamische ontwikkelingen, die bijdragen aan meerdere functies en ambities waaronder natuur, waterveiligheid, visserij, recreatie en infrastructuur, en waarbij optimaal gebruik wordt gemaakt van de in het gebied aanwezige natuurlijke factoren als wind, water, sediment en vegetatie. Deze visie laat zien dat er kansen liggen voor nieuwe vormen van waterbouw, die de veiligheid van de Houtribdijk en de Afsluitdijk vergroten. Ook worden de kansen in kaart gebracht om met moerassen zowel de waterveiligheid als de biodiversiteit langs dijken bij de Noordoostpolder te verbeteren

    Promoter methylation and large intragenic rearrangements of DPYD are not implicated in severe toxicity to 5-fluorouracil-based chemotherapy in gastrointestinal cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe toxicity to 5-fluorouracil (5-FU) based chemotherapy in gastrointestinal cancer has been associated with constitutional genetic alterations of the dihydropyrimidine dehydrogenase gene (<it>DPYD</it>).</p> <p>Methods</p> <p>In this study, we evaluated <it>DPYD </it>promoter methylation through quantitative methylation-specific PCR and screened <it>DPYD </it>for large intragenic rearrangements in peripheral blood from 45 patients with gastrointestinal cancers who developed severe 5-FU toxicity. <it>DPYD </it>promoter methylation was also assessed in tumor tissue from 29 patients</p> <p>Results</p> <p>Two cases with the IVS14+1G > A exon 14 skipping mutation (c.1905+1G > A), and one case carrying the 1845 G > T missense mutation (c.1845G > T) in the DPYD gene were identified. However, <it>DPYD </it>promoter methylation and large <it>DPYD </it>intragenic rearrangements were absent in all cases analyzed.</p> <p>Conclusions</p> <p>Our results indicate that <it>DPYD </it>promoter methylation and large intragenic rearrangements do not contribute significantly to the development of 5-FU severe toxicity in gastrointestinal cancer patients, supporting the need for additional studies on the mechanisms underlying genetic susceptibility to severe 5-FU toxicity.</p

    Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently it has been shown that radiation induces migration of glioma cells and facilitates a further spread of tumor cells locally and systemically. The aim of this study was to evaluate whether radiotherapy induces migration in head and neck squamous cell carcinoma (HNSCC). A further aim was to investigate the effects of blocking the epidermal growth factor receptor (EGFR) and its downstream pathways (Raf/MEK/ERK, PI3K/Akt) on tumor cell migration in vitro.</p> <p>Methods</p> <p>Migration of tumor cells was assessed via a wound healing assay and proliferation by a MTT colorimeritric assay using 3 HNSCC cell lines (BHY, CAL-27, HN). The cells were treated with increasing doses of irradiation (2 Gy, 5 Gy, 8 Gy) in the presence or absence of EGF, EGFR-antagonist (AG1478) or inhibitors of the downstream pathways PI3K (LY294002), mTOR (rapamycin) and MEK1 (PD98059). Biochemical activation of EGFR and the downstream markers Akt and ERK were examined by Western blot analysis.</p> <p>Results</p> <p>In absence of stimulation or inhibition, increasing doses of irradiation induced a dose-dependent enhancement of migrating cells (p < 0.05 for the 3 HNSCC cell lines) and a decrease of cell proliferation (p < 0.05 for the 3 HNSCC cell lines). The inhibition of EGFR or the downstream pathways reduced cell migration significantly (almost all p < 0.05 for the 3 HNSCC cell lines). Stimulation of HNSCC cells with EGF caused a significant increase in migration (p < 0.05 for the 3 HNSCC cell lines). After irradiation alone a pronounced activation of EGFR was observed by Western blot analysis.</p> <p>Conclusion</p> <p>Our results demonstrate that the EGFR is involved in radiation induced migration of HNSCC cells. Therefore EGFR or the downstream pathways might be a target for the treatment of HNSCC to improve the efficacy of radiotherapy.</p

    Analysis of Polymorphisms and Haplotype Structure of the Human Thymidylate Synthase Genetic Region: A Tool for Pharmacogenetic Studies

    Get PDF
    5-fluorouracil (5FU), a widely used chemotherapeutic drug, inhibits the DNA replicative enzyme, thymidylate synthase (Tyms). Prior studies implicated a VNTR (variable numbers of tandem repeats) polymorphism in the 5â€Č-untranslated region (5â€Č-UTR) of the TYMS gene as a determinant of Tyms expression in tumors and normal tissues and proposed that these VNTR genotypes could help decide fluoropyrimidine dosing. Clinical associations between 5FU-related toxicity and the TYMS VNTR were reported, however, results were inconsistent, suggesting that additional genetic variation in the TYMS gene might influence Tyms expression. We thus conducted a detailed genetic analysis of this region, defining new polymorphisms in this gene including mononucleotide (poly A:T) repeats and novel single nucleotide polymorphisms (SNPs) flanking the VNTR in the TYMS genetic region. Our haplotype analysis of this region used data from both established and novel genetic variants and found nine SNP haplotypes accounting for more than 90% of the studied population. We observed non-exclusive relationships between the VNTR and adjacent SNP haplotypes, such that each type of VNTR commonly occurred on several haplotype backgrounds. Our results confirmed the expectation that the VNTR alleles exhibit homoplasy and lack the common ancestry required for a reliable marker of a linked adjacent locus that might govern toxicity. We propose that it may be necessary in a clinical trial to assay multiple types of genetic polymorphisms in the TYMS region to meaningfully model linkage of genetic markers to 5FU-related toxicity. The presence of multiple long (up to 26 nt), polymorphic monothymidine repeats in the promoter region of the sole human thymidylate synthetic enzyme is intriguing
    • 

    corecore