13 research outputs found

    Cadmium effects on p38/MAPK isoforms in MDA-MB231 breast cancer cells

    No full text
    Emerging evidence seems to indicate that the heavy metal cadmium (Cd) is able to regulate gene expression, drastically affecting the pattern of transcriptional activity in normal and pathological eukaryotic cells, also affecting intracellular signalization events. Human p38 is a family of mitogen-activated protein kinases consisting of four isoforms (\u3b1, \u3b2, \u3b3 and \u3b4) which mediate signal transduction cascades controlling several aspects of cell physiology. In this study we examined whether exposure of MDA-MB231 tumor cells from the human breast to Cd may exert some effect on p38 isoform expression and accumulation, as well as on p38 activation. Employing a combination of proliferation tests, conventional and semiquantitative multiplex (SM)-polymerase chain reaction (PCR) and Western blot assays, we report that the treatment of breast cancer cells with 5 \u3bcM CdCl2 induces a diversified modulation of the transcription patterns of p38 isoform genes and of the accumulation of the related protein products, which are, on the other hand, also affected by \u3b1 and \u3b2 isoform functional inactivation induced by SB203580. Our findings suggest the existence of so far unexplored mechanisms of gene regulation in our model system and validate that MDA-MB231 cell line is a suitable in vitro model for further and more detailed studies on the intracellular mechanisms underlying the control of p38 expression, synthesis and activation in mammary tumor cells exposed to different stresses

    Suboptimal Porcine Endogenous Retrovirus Infection in Non-Human Primate Cells: Implication for Preclinical Xenotransplantation

    Get PDF
    Background: Porcine endogenous retrovirus (PERV) poses a potential risk of zoonotic infection in xenotransplantation. Preclinical transplantation trials using non-human primates (NHP) as recipients of porcine xenografts present the opportunity to assess the zoonosis risk in vivo. However, PERV poorly infects NHP cells for unclear reasons and therefore NHP may represent a suboptimal animal model to assess the risk of PERV zoonoses. We investigated the mechanism responsible for the low efficiency of PERV-A infection in NHP cells.Principal Findings: Two steps, cell entry and exit, were inefficient for the replication of high-titer, human-tropic A/C recombinant PERV. A restriction factor, tetherin, is likely to be responsible for the block to matured virion release, supported by the correlation between the levels of inhibition and tetherin expression. In rhesus macaque, cynomolgus macaque and baboon the main receptor for PERV entry, PERV-A receptor 1 (PAR-1), was found to be genetically deficient: PAR-1 genes in these species encode serine at amino acid 109 in place of the leucine in human PAR-1. This genetic defect inevitably impacts in vivo sensitivity to PERV infection of these species. In contrast, African green monkey (AGM) PAR-1 is functional, but PERV infection is still poor. Although the mechanism is unclear, tunicamycin treatment, which removes N-glycosylated sugar chains, increases PERV infection, suggesting a possible role for the glycosylation of the receptors.Conclusions: Since cynomolgus macaque and baboon, species often used in pig-to-NHP xenotransplantation experiments, have a defective PAR-1, they hardly represent an ideal animal model to assess the risk of PERV transmission in xenotransplantation. Alternatively, NHP species, like AGM, whose both PARs are functional may represent a better model than baboon and cynomolgus macaque for PERV zoonosis in vivo studies
    corecore