6,579 research outputs found

    The self-trapped hole in caesium halides

    Get PDF
    The equilibrium lattice configuration, electronic excitation energies and activation energies for hopping motion are calculated for a self-trapped hole in simple cubic CsCl, CsBr and CsI. The defect is regarded as a X2- molecular ion (X=Cl, Br, I) whose bond-length has been modified by the crystalline environment. Agreement with the experimental ultraviolet transition energies is good. Excitation energies deduced from measurement of g-shifts in CsBr and CsI are too low, a feature common to all alkali bromides and iodides, and attributed to the approximations involved in their deviation. The initial calculations predict lower activation energies of 90 degrees jumps than for 180 degrees jumps, in contrast with what is observed in CsI. An alternative model is presented, which reproduces the correct trend. Comparison of the actual numbers with experiment is hampered by the fact that the latter are done at low temperature (60-90K), the calculations being done in the high-temperature limit

    ELECTRONIC STRUCTURE AND LUMINESCENCE OF CSI:NA

    Get PDF
    Calculations are performed on several aspects of the luminescence of pure CsI and CsI:Na. These include electronic-structure calculations by both pseudopotential and semi-empirical molecular-orbital methods, as well as lattice-configuration studies. The results suggest that the main observed emission in CsI:Na at 2.95 eV involves the recombination of a self-trapped exciton immediately adjacent to the substitutional Na impurity

    Thermoelectricity of EuCu{2}(Ge{1-x}Si{x}){2} intermetallics

    Full text link
    The evolution of the thermopower EuCu{2}(Ge{1-x}Si{x}){2} intermetallics, which is induced by the Si-Ge substitution, is explained by the Kondo scattering of conduction electrons on the Eu ions which fluctuate between the magnetic 2+ and non-magnetic 3+ Hund's rule configurations. The Si-Ge substitution is equivalent to chemical pressure which modifies the coupling and the relative occupation of the {\it f} and conduction states.Comment: 2 pages, Proceedings of the SCES 2005 confernece. Physica B (2006), in pres

    Mid-infrared size survey of Young Stellar Objects: Description of Keck segment-tilting experiment and basic results

    Full text link
    The mid-infrared properties of pre-planetary disks are sensitive to the temperature and flaring profiles of disks for the regions where planet formation is expected to occur. In order to constrain theories of planet formation, we have carried out a mid-infrared (wavelength 10.7 microns) size survey of young stellar objects using the segmented Keck telescope in a novel configuration. We introduced a customized pattern of tilts to individual mirror segments to allow efficient sparse-aperture interferometry, allowing full aperture synthesis imaging with higher calibration precision than traditional imaging. In contrast to previous surveys on smaller telescopes and with poorer calibration precision, we find most objects in our sample are partially resolved. Here we present the main observational results of our survey of 5 embedded massive protostars, 25 Herbig Ae/Be stars, 3 T Tauri stars, 1 FU Ori system, and 5 emission-line objects of uncertain classification. The observed mid-infrared sizes do not obey the size-luminosity relation found at near-infrared wavelengths and a companion paper will provide further modelling analysis of this sample. In addition, we report imaging results for a few of the most resolved objects, including complex emission around embedded massive protostars, the photoevaporating circumbinary disk around MWC 361A, and the subarcsecond binaries T Tau, FU Ori and MWC 1080.Comment: Accepted by Astrophysical Journal. 38 pages. 9 figure

    KOI-1003: A new spotted, eclipsing RS CVn binary in the Kepler field

    Full text link
    Using the high-precision photometry from the Kepler space telescope, thousands of stars with stellar and planetary companions have been observed. The characterization of stars with companions is not always straightforward and can be contaminated by systematic and stellar influences on the light curves. Here, through a detailed analysis of starspots and eclipses, we identify KOI-1003 as a new, active RS CVn star---the first identified with data from Kepler. The Kepler light curve of this close binary system exhibits the system's primary transit, secondary eclipse, and starspot evolution of two persistent active longitudes. The near equality of the system's orbital and rotation periods indicates the orbit and primary star's rotation are nearly synchronized (Porb=8.360613±0.000003P_\mathrm{orb} = 8.360613\pm0.000003 days; Prot∼8.23P_\mathrm{rot} \sim 8.23 days). By assuming the secondary star is on the main sequence, we suggest the system consists of a 1.45−0.19+0.11 M⊙1.45^{+0.11}_{-0.19} \ M_\odot subgiant primary and a 0.59−0.04+0.03 M⊙0.59^{+0.03}_{-0.04} \ M_\odot main-sequence companion. Our work gives a distance of 4400±6004400 \pm 600 pc and an age of t=3.0+2.0−0.5t = 3.0^{-0.5}_{+2.0} Gyr, parameters which are discrepant with previous studies that included the star as a member of the open cluster NGC 6791.Comment: 21 pages, 19 figures, accepted to Ap

    Strong Near-Infrared Emission Interior to the Dust-Sublimation Radius of Young Stellar Objects MWC275 and AB Aur

    Get PDF
    Using the longest optical-interferometeric baselines currently available, we have detected strong near-infrared (NIR) emission from inside the dust-destruction radius of Herbig Ae stars MWC275 and AB Aur. Our sub-milli-arcsecond resolution observations unambiguously place the emission between the dust-destruction radius and the magnetospheric co-rotation radius. We argue that this new component corresponds to hot gas inside the dust-sublimation radius, confirming recent claims based on spectrally-resolved interferometry and dust evaporation front modeling.Comment: 12 pages, 4 figures, Accepted for publication in ApJ

    Born Again Protoplanetary Disk Around Mira B

    Get PDF
    The Mira AB system is a nearby (~107 pc) example of a wind accreting binary star system. In this class of system, the wind from a mass-losing red giant star (Mira A) is accreted onto a companion (Mira B), as indicated by an accretion shock signature in spectra at ultraviolet and X-ray wavelengths. Using novel imaging techniques, we report the detection of emission at mid-infrared wavelengths between 9.7 and 18.3 μ\mum from the vicinity of Mira B but with a peak at a radial position about 10 AU closer to the primary Mira A. We interpret the mid-infrared emission as the edge of an optically-thick accretion disk heated by Mira A. The discovery of this new class of accretion disk fed by M-giant mass loss implies a potential population of young planetary systems in white-dwarf binaries which has been little explored, despite being relatively common in the solar neighborhood.Comment: Accepted for Ap
    • …
    corecore