1,444 research outputs found

    Effect of gait speed on trajectory prediction using deep learning models for exoskeleton applications

    Get PDF
    Gait speed is an important biomechanical determinant of gait patterns, with joint kinematics being influenced by it. This study aims to explore the effectiveness of fully connected neural networks (FCNNs), with a potential application for exoskeleton control, in predicting gait trajectories at varying speeds (specifically, hip, knee, and ankle angles in the sagittal plane for both limbs). This study is based on a dataset from 22 healthy adults walking at 28 different speeds ranging from 0.5 to 1.85 m/s. Four FCNNs (a generalised-speed model, a low-speed model, a high-speed model, and a low-high-speed model) are evaluated to assess their predictive performance on gait speeds included in the training speed range and on speeds that have been excluded from it. The evaluation involves short-term (one-step-ahead) predictions and long-term (200-time-step) recursive predictions. The results show that the performance of the low- and high-speed models, measured using the mean absolute error (MAE), decreased by approximately 43.7% to 90.7% when tested on the excluded speeds. Meanwhile, when tested on the excluded medium speeds, the performance of the low-high-speed model improved by 2.8% for short-term predictions and 9.8% for long-term predictions. These findings suggest that FCNNs are capable of interpolating to speeds within the maximum and minimum training speed ranges, even if not explicitly trained on those speeds. However, their predictive performance decreases for gaits at speeds beyond or below the maximum and minimum training speed ranges

    Microwave broadband characterization of aging of SU-8 polymer as CPW substrate

    Get PDF
    In this paper we present the methodology and the numerical results related to the analysis of aging of the SU- 8 polymer when used as a primary layer for the realization of Coplanar Waveguide (CPW) structures. As test devices, we used a set of transmission lines with different lengths and T-shaped open stubs shunt resonators; by using these geometries, we are able to acquire the data in a broadband range, in principle between 1 GHz and 40 GHz. We conduct the analysis by comparing two different technology run: the first wafer with a deposited layer by a 12-year-old SU-8 and the second wafer, with the same photolithographed metallic geometries, with a brand-new processed SU-8 photoresist

    Androgen receptor mutations in prostate cancer

    Get PDF
    We analyzed the frequency and relevance of mutations in the coding region of the androgen receptor (AR) in genomic DNA extracted from 137 specimens of prostate cancer. The specimens were obtained from the primary tumors of patients affected by stage B disease [15 nonmicrodissected (group 1A) and 84 microdissected (group 1B)] and from the metastatic deposits of individuals with stage D1 disease [8 nonmicrodissected (group 2A) and 30 microdissected (group 2B)] who had not undergone androgen ablation therapy. The study was conducted by PCR-single strand conformational polymorphism (SSCP) analysis of exons 2-8 in the four groups and direct sequence analysis of exon 1 in group 1B. As positive and negative controls, we used genomic DNA extracted from genital skin fibroblasts of patients affected by various forms of androgen resistance with known mutations in the AR. To control for genetic instability, PCR-SSCP analysis of exon 2 of the human progesterone receptor was carried out on each specimen. The overall number of mutations detected was 11 (8%). No mutations were detected in any of the 99 patients with stage B disease. Eleven mutations were detected in exons 2-8 in 8 of the 38 patients with stage D1 disease (all in group 2B). Simultaneous analysis of exon 2 of the progesterone receptor was carried out, and no SSCP changes were identified. These data suggest that AR mutations are rare and presumably do not play a role in the initial phase of prostatic carcinogenesis. The presence of a significant number of AR mutations in metastatic disease indicates that mutations of this molecule may play a role in the most advanced phases of the natural history of this disease, either by facilitating growth or acquisition of the metastatic phenotype

    Design optimization of meta-material transmission lines for linear and non-linear microwave signal processing

    Get PDF
    The possibility to use CRLH (Composite Right-/Left-Handed) cells to realize both distributed wide-band filters for linear signal processing and non-linear devices like frequency doublers is investigated analytically and numerically. Full-wave electromagnetic simulations are performed for the filtering structure by means of a commercial software package and confirm the validity of the analytic results. Numerical results for CRLH NLTL (Non-Linear Transmission Line) obtained by using the Microwave Office are discussed, providing design considerations about the synthesis of such a component

    Self-sealing posterior scleral perforation in airgun ocular trauma, surgical tip: A case report

    Get PDF
    Background: Intraorbital metallic foreign bodies have varied clinical presentations. Here, we report the unusual case of intraoperative evidence of spontaneously healed posterior scleral perforation in a severe ballistic trauma without previous instrumental signs of penetrating wound and complete visual restoration after surgery. Case presentation: The patient was hit by several lead hunting pellets in the chest, abdomen, limbs, face and orbit. Computed Tomography (CT) images revealed the presence of a pellet within the orbitary cavity, close to the optic nerve, with no signs of penetrating ocular wound. While performing vitrectomy for severe vitreous hemorrhage, a point of strong adherence between a old hemorrhage and retinal surface was identified and managed conservatively, as it was attributed to trauma related-impact area. So, lead foreign body took an unusual trajectory impacting the globe and finally lodging back in the deep orbitary cavity, in absence of significant ocular injury and with visual prognosis preservation. Conclusions: Our findings provide further information on orbital injuries from airguns, a theme of growing popularity and concern. Intraoperative recognition of hardly removable old hemorrhagic clot as self-blockage site of posterior scleral penetrating trauma, allowed for surgical stabilization and minimal solicitation of the area to avoid inadvertent perforation

    Materials and technological processes for High-Gradient accelerating structures: new results from mechanical tests of an innovative braze-free cavity

    Get PDF
    Pure oxygen-free high-conductivity copper is a widely used material for manufacturing accelerating cavities working at room temperature. Several studies attempted to explain limitations associated with the maximum allowed field gradients and the behaviour of vacuum RF breakdown in copper accelerating structures through generation and movement of dislocations under stresses associated with RF electric and magnetic fields. Pure copper and also copper alloys undergo mechanical and thermal treatments to be hardened and strengthened during manufacturing, although their mechanical properties significantly change after heating above 590ˆC. High temperature brazing and diffusion bonding are assembly methods widely used to manufacture ultra-high vacuum accelerating devices. However, these processes, occurring at about 800-1000ˆC, significantly affect the mechanical properties of copper and copper alloys. We present here a novel Tungsten Inert Gas welding procedure, which is fast and keeps the high-gradient surfaces of the cavity and other components well below the copper annealing temperature. This process may be successfully used to manufacture copper-based accelerating components. This technology preserves the hardness and cleanliness of copper in order to achieve the maximum accelerating gradient

    Reliability of RF MEMS capacitive and ohmic switches for space redundancy configurations

    Get PDF
    In this paper RF MEMS switches in coplanar waveguide (CPW) configuration designed for redundancy space applications have been analyzed, to demonstrate their reliability in terms of microwave performances when subjected to DC actuations up to one million cycles. As a result, both the investigated structures fulfill the current electrical requirements expected for redundancy logic purposes

    MEMS-Switched Triangular and U-Shaped Band-Stop Resonators for K-Band Operation

    Get PDF
    Triangular resonators re-shaped into Sierpinski geometry and U-shaped resonators were designed, linking them with single-pole-double-through (SPDT) RF MEMS switches to provide frequency tuning for potential applications in the K-Band. Prototypes of band-stop narrowband filters working around 20 GHz and 26 GHz, interesting for RADAR and satellite communications, were studied in a coplanar waveguide (CPW) configuration, and the tuning was obtained by switching between two paths of the devices loaded with different resonators. As a result, dual-band operation or fine-tuning could be obtained depending on the choice of the resonator, acting as a building block. The studied filters belong to the more general group of devices inspired by a metamaterial design
    • …
    corecore