93 research outputs found

    Targeted Neuronal Death Affects Neuronal Replacement and Vocal Behavior in Adult Songbirds

    Get PDF
    AbstractIn the high vocal center (HVC) of adult songbirds, increases in spontaneous neuronal replacement correlate with song changes and with cell death. We experimentally induced death of specific HVC neuron types in adult male zebra finches using targeted photolysis. Induced death of a projection neuron type that normally turns over resulted in compensatory replacement of the same type. Induced death of the normally nonreplaced type did not stimulate their replacement. In juveniles, death of the latter type increased recruitment of the replaceable kind. We infer that neuronal death regulates the recruitment of replaceable neurons. Song deteriorated in some birds only after elimination of replaceable neurons. Behavioral deficits were transient and followed by variable degrees of recovery. This raises the possibility that induced neuronal replacement can restore a learned behavior

    LHX2 Interacts with the NuRD Complex and Regulates Cortical Neuron Subtype Determinants Fezf2 and Sox11

    Get PDF
    In the developing cerebral cortex, sequential transcriptional programs take neuroepithelial cells from proliferating progenitors to differentiated neurons with unique molecular identities. The regulatory changes that occur in the chromatin of the progenitors are not well understood. During deep layer neurogenesis, we show that transcription factor LHX2 binds to distal regulatory elements of Fezf2 and Sox11, critical determinants of neuron subtype identity in the mouse neocortex. We demonstrate that LHX2 binds to the nucleosome remodeling and histone deacetylase histone remodeling complex subunits LSD1, HDAC2, and RBBP4, which are proximal regulators of the epigenetic state of chromatin. When LHX2 is absent, active histone marks at the Fezf2 and Sox11 loci are increased. Loss of LHX2 produces an increase, and overexpression of LHX2 causes a decrease, in layer 5 Fezf2 and CTIP2-expressing neurons. Our results provide mechanistic insight into how LHX2 acts as a necessary and sufficient regulator of genes that control cortical neuronal subtype identity

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    213Bi-PAI2 conjugate selectively induces apoptosis in PC3 metastatic prostate cancer cell line and shows anti-cancer activity in a xenograft animal model

    Get PDF
    A novel α-particle emitting (213Bi) plasminogen activator inhibitor type 2 construct, which targets the membrane-bound urokinase plasminogen activator on prostate cancer cells, was prepared and evaluated in vitro and in a xenograft animal model. The PC3 prostate cancer cell line expresses urokinase plasminogen activator which binds to its receptor on the cell membrane; plasminogen activator inhibitor type 2 is bound to urokinase plasminogen activator/urokinase plasminogen activator receptor to form stable complexes. In vitro, the cytotoxicity of 213Bi-plasminogen activator inhibitor type 2 against prostate cancer cells was tested using the MTS assay and apoptosis was documented using terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labelling (TUNEL) assay. In vivo, antiproliferative effects for tumours and prostate cancer lymph node metastasis were carried out in an athymic nude mouse model with a subcutaneous xenograft of PC3 cells. 213Bi-plasminogen activator inhibitor type 2 was specifically cytotoxic to PC3 cells in a concentration-dependent fashion, causing the cells to undergo apoptosis. A single local or i.p. injection of 213Bi-plasminogen activator inhibitor type 2 was able to completely regress the growth of tumours and lymph node metastases 2 days post subcutaneous inoculation, and obvious tumour regression was achieved in the therapy groups compared with control groups with 213Bi-plasminogen activator inhibitor type 2 when the tumours measured 30–40 mm3 and 85–100 mm3. All control animals and one of five (20%) mice treated with 3 mCi kg−1 213Bi-plasminogen activator inhibitor type 2 developed metastases in the lymph nodes while no lymphatic spread of cancer was found in the 6 mCi kg−1 treated groups at 2 days and 2 weeks post-cell inoculation. These results demonstrate that this novel 213Bi-plasminogen activator inhibitor type 2 conjugate selectively targets prostate cancer in vitro and in vivo, and could be considered for further development for the therapy of prostate cancer, especially for the control of micro-metastases or in minimal residual disease

    The Antioxidant Role of Xanthurenic Acid in the Aedes aegypti Midgut during Digestion of a Blood Meal

    Get PDF
    In the midgut of the mosquito Aedes aegypti, a vector of dengue and yellow fever, an intense release of heme and iron takes place during the digestion of a blood meal. Here, we demonstrated via chromatography, light absorption and mass spectrometry that xanthurenic acid (XA), a product of the oxidative metabolism of tryptophan, is produced in the digestive apparatus after the ingestion of a blood meal and reaches milimolar levels after 24 h, the period of maximal digestive activity. XA formation does not occur in the White Eye (WE) strain, which lacks kynurenine hydroxylase and accumulates kynurenic acid. The formation of XA can be diminished by feeding the insect with 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl] benzenesulfonamide (Ro-61-8048), an inhibitor of XA biosynthesis. Moreover, XA inhibits the phospholipid oxidation induced by heme or iron. A major fraction of this antioxidant activity is due to the capacity of XA to bind both heme and iron, which occurs at a slightly alkaline pH (7.5-8.0), a condition found in the insect midgut. The midgut epithelial cells of the WE mosquito has a marked increase in occurrence of cell death, which is reversed to levels similar to the wild type mosquitoes by feeding the insects with blood supplemented with XA, confirming the protective role of this molecule. Collectively, these results suggest a new role for XA as a heme and iron chelator that provides protection as an antioxidant and may help these animals adapt to a blood feeding habit

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Differentiation of transplanted neural precursors varies regionally in adult striatum

    No full text
    IN the current experiments, we address the emerging hypothesis that transplanted neural precursor cells can respond to local microenvironmental signals in the post-developmental brain and exhibit patterns of differentiation that depend critically on specific location within the brain. HiB5 precursor cells were transplanted into adult mouse cortex, corpus callosum, and multiple positions in striatum, and assessed for differentiation by morphology and immunocytochemistry. Our results indicate that the likelihood of both neuronal and glial differentiation of transplanted precursors depends on proximity to the medial striatum or subventricular zone of the adult host, supporting the concept that microenvironmental signals can critically affect the differentiation fate of neural precursors, and suggesting the potential to manipulate such signals in the adult brain
    corecore