131 research outputs found

    Interface formation in K doped poly(dialkoxy-p-phenylene vinylene) light-emitting diodes

    Get PDF
    Manufacturing of Al/K/OC1C10 poly(p-phenylene vinylene)/indium–tin–oxide light emitting diode structures by physical vapor deposition of K onto the emissive polymer layer has been characterized by electroluminescence and ion spectroscopy. Varying the deposited K areal density from 3.9×1012 to 1.2×1014 atoms cm−2 the external efficiency rises from 0.01 to 1.2 Cd A−1. Spectra obtained by ion scattering analysis demonstrate the overall absence of K at the polymer outermost surface layer, and diffusion up to a depth of 200 Å. Depth profiles have been derived, and were modeled using an irreversible first order “trapping” reaction. Trapping may stem from confinement of the electron at a conjugated segment, that was donated through charge transfer typical for alkali/π-conjugated systems. This study demonstrates that evaporation of low work function metals onto organic systems should not be depicted as simple layered stacking structures. The enhanced electroluminescence with submonolayer K deposition is attributed to the shift of the recombination zone away from the Al cathode, which is demonstrated to prevail over the known exciton quenching mechanism due to the formation of gap states

    Charge transport and trapping in Cs-doped poly(dialkoxy-p-phenylene vinylene) light-emitting diodes

    Get PDF
    Al/Cs/MDMO-PPV/ITO (where MDMO-PPV stands for poly[2-methoxy-5-(3'-7'-dimethyloctyloxy)-1,4phenylene vinylene] and ITO is indium tin oxide) light-emitting diode (LED) structures, made by physical vapor deposition of Cs on the emissive polymer layer, have been characterized by electroluminescence, current-voltage, and admittance spectroscopy. Deposition of Cs is found to improve the balance between electron and hole currents, enhancing the external electroluminescence efficiency from 0.01 cd A-1 for the bare Al cathode to a maximum of 1.3 cd A-1 for a Cs coverage of only 1.5×1014 atoms/cm2. By combining I-V and admittance spectra with model calculations, in which Cs diffusion profiles are explicitly taken into account, this effect could be attributed to a potential drop at the cathode interface due to a Cs-induced electron donor level 0.61 eV below the lowest unoccupied molecular orbital. In addition, the admittance spectra in the hole-dominated regime are shown to result from space-charge-limited conduction combined with charge relaxation in trap levels. This description allows us to directly determine the carrier mobility, even in the presence of traps. In contrast to recent literature, we demonstrate that there is no need to include dispersive transport in the description of the carrier mobility to explain the excess capacitance that is typically observed in admittance spectra of p-conjugated materials

    Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy

    Get PDF
    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials
    • 

    corecore