9,876 research outputs found

    Destruction of first-order phase transition in a random-field Ising model

    Full text link
    The phase transitions that occur in an infinite-range-interaction Ising ferromagnet in the presence of a double-Gaussian random magnetic field are analyzed. Such random fields are defined as a superposition of two Gaussian distributions, presenting the same width σ\sigma. Is is argued that this distribution is more appropriate for a theoretical description of real systems than its simpler particular cases, i.e., the bimodal (σ=0\sigma=0) and the single Gaussian distributions. It is shown that a low-temperature first-order phase transition may be destructed for increasing values of σ\sigma, similarly to what happens in the compound FexMg1xCl2Fe_{x}Mg_{1-x}Cl_{2}, whose finite-temperature first-order phase transition is presumably destructed by an increase in the field randomness.Comment: 13 pages, 3 figure

    On Hastings' counterexamples to the minimum output entropy additivity conjecture

    Full text link
    Hastings recently reported a randomized construction of channels violating the minimum output entropy additivity conjecture. Here we revisit his argument, presenting a simplified proof. In particular, we do not resort to the exact probability distribution of the Schmidt coefficients of a random bipartite pure state, as in the original proof, but rather derive the necessary large deviation bounds by a concentration of measure argument. Furthermore, we prove non-additivity for the overwhelming majority of channels consisting of a Haar random isometry followed by partial trace over the environment, for an environment dimension much bigger than the output dimension. This makes Hastings' original reasoning clearer and extends the class of channels for which additivity can be shown to be violated.Comment: 17 pages + 1 lin

    Stability and quasi-normal modes of charged black holes in Born-Infeld gravity

    Full text link
    In this paper we study the stability and quasi-normal modes of scalar perturbations of black holes. The static charged black hole considered here is a solution to Born-Infeld electrodynamics coupled to gravity. We conclude that the black hole is stable. We also compare the stability of it with its linear counter-part Reissner-Nordstrom black hole. The quasi-normal modes are computed using the WKB method. The behavior of these modes with the non-linear parameter, temperature, mass of the scalar field and the spherical index are analyzed in detail.Comment: Latex, 17 pages, 13 figures, some sections edited, references adde

    Entanglement dynamics in presence of diversity under decohering environments

    Get PDF
    We study the evolution of entanglement of a pair of coupled, non-resonant harmonic oscillators in contact with an environment. For both the cases of a common bath and of two separate baths for each of the oscillators, a full master equation is provided without rotating wave approximation. This allows us to characterize the entanglement dynamics as a function of the diversity between the oscillators frequencies and their mutual coupling. Also the correlation between the occupation numbers is considered to explore the degree of quantumness of the system. The singular effect of the resonance condition (identical oscillators) and its relationship with the possibility of preserving asymptotic entanglement are discussed. The importance of the bath's memory properties is investigated by comparing Markovian and non-Markovian evolutions

    Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization

    Full text link
    We investigate the critical behaviour of charged and rotating AdS black holes in d spacetime dimensions, including effects from non-linear electrodynamics via the Born-Infeld action, in an extended phase space in which the cosmological constant is interpreted as thermodynamic pressure. For Reissner-Nordstrom black holes we find that the analogy with the Van der Walls liquid-gas system holds in any dimension greater than three, and that the critical exponents coincide with those of the Van der Waals system. We find that neutral slowly rotating black holes in four space-time dimensions also have the same qualitative behaviour. However charged and rotating black holes in three spacetime dimensions do not exhibit critical phenomena. For Born-Infeld black holes we define a new thermodynamic quantity B conjugate to the Born-Infeld parameter b that we call Born-Infeld vacuum polarization. We demonstrate that this quantity is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.Comment: 23 pages, 32 figures, v2: minor changes, upgraded reference

    Low frequency admittance of a quantum point contact

    Full text link
    We present a current and charge conserving theory for the low frequency admittance of a quantum point contact. We derive expressions for the electrochemical capacitance and the displacement current. The latter is determined by the {\em emittance} which equals the capacitance only in the limit of vanishing transmission. With the opening of channels the capacitance and the emittance decrease in a step-like manner in synchronism with the conductance steps. For vanishing reflection, the capacitance vanishes and the emittance is negative.Comment: 11 pages, revtex file, 2 ps figure

    Rotating Dilaton Solutions in 2+1 Dimensions

    Get PDF
    We report a three parameter family of solutions for dilaton gravity in 2+1 dimensions with finite mass and finite angular momentum. These solutions are obtained by a compactification of vacuum solutions in 3+1 dimensions with cylindrical symmetry. One class of solutions corresponds to conical singularities and the other leads to curvature singularities.Comment: Accepted to be published in Gen. Rel. Grav., added reference

    Enhancing Employability of Management Graduates of State Universities in Sri Lanka: An Examination of Job Market Requirements

    Get PDF
    Higher education helps in enhancing the human resources required for development. Universities and higher education institutes play a vital role in disseminating and creating knowledge through teaching and research, contributing to the development of any country. The quality and relevance of the output (graduates) of higher education institutes need to be enhanced to increase graduates’ employability. Graduate unemployment has become a significant problem in Sri Lanka. If graduates are unemployed, this will directly and negatively influence economic development. The main objectives of this study are to identify job market requirements of the industry and factors affecting the success of the graduates’ interviews. This study used qualitative research methods as a mono method.  Data were collected using advertisements from two selected leading English and Sinhala weekend newspapers published from October 2019 to January 2020, and in-depth interviews were conducted with selected Human Resource managers. Newspaper analysis and job market requirement analysis were done using an inductive thematic analysis approach. Five core skills were identified as the job market requirements, namely, problem-solving skills, communication skills, numeracy skills, computer skills, and interpersonal skills. Leadership qualities, communication and presentation ability, teamwork, interpersonal relations, practical knowledge, positive attitudes, hardworking characteristics, well-preparedness at the interview, and a clear understanding of the graduate's career path mainly affect the graduate interview's success. The study proposes policy measures to improve the employability of management graduates of state universities in Sri Lanka.  Keywords: Employability, Management Graduates, State Universities, job market requirements, Sri Lank

    Tricritical Points in the Sherrington-Kirkpatrick Model in the Presence of Discrete Random Fields

    Full text link
    The infinite-range-interaction Ising spin glass is considered in the presence of an external random magnetic field following a trimodal (three-peak) distribution. The model is studied through the replica method and phase diagrams are obtained within the replica-symmetry approximation. It is shown that the border of the ferromagnetic phase may present first-order phase transitions, as well as tricritical points at finite temperatures. Analogous to what happens for the Ising ferromagnet under a trimodal random field, it is verified that the first-order phase transitions are directly related to the dilution in the fields (represented by p0p_{0}). The ferromagnetic boundary at zero temperature also exhibits an interesting behavior: for 0<p0<p00.308560<p_{0}<p_{0}^{*} \approx 0.30856, a single tricritical point occurs, whereas if p0>p0p_{0}>p_{0}^{*} the critical frontier is completely continuous; however, for p0=p0p_{0}=p_{0}^{*}, a fourth-order critical point appears. The stability analysis of the replica-symmetric solution is performed and the regions of validity of such a solution are identified; in particular, the Almeida-Thouless line in the plane field versus temperature is shown to depend on the weight p0p_{0}.Comment: 23pages, 7 ps figure

    The scale-free character of the cluster mass function and the universality of the stellar IMF

    Full text link
    Our recent determination of a Salpeter slope for the IMF in the field of 30 Doradus (Selman and Melnick 2005) appears to be in conflict with simple probabilistic counting arguments advanced in the past to support observational claims of a steeper IMF in the LMC field. In this paper we re-examine these arguments and show by explicit construction that, contrary to these claims, the field IMF is expected to be exactly the same as the stellar IMF of the clusters out of which the field was presumably formed. We show that the current data on the mass distribution of clusters themselves is in excellent agreement with our model, and is consistent with a single spectrum {\it by number of stars} of the type nβn^\beta with beta between -1.8 and -2.2 down to the smallest clusters without any preferred mass scale for cluster formation. We also use the random sampling model to estimate the statistics of the maximal mass star in clusters, and confirm the discrepancy with observations found by Weidner and Kroupa (2006). We argue that rather than signaling the violation of the random sampling model these observations reflect the gravitationally unstable nature of systems with one very large mass star. We stress the importance of the random sampling model as a \emph{null hypothesis} whose violation would signal the presence of interesting physics.Comment: 9 pages emulateap
    corecore