1,791 research outputs found

    Carbon Ignition in Type Ia Supernovae: An Analytic Model

    Full text link
    The observable properties of a Type Ia supernova are sensitive to how the nuclear runaway ignites in a Chandrasekhar mass white dwarf - at a single point at its center, off-center, or at multiple points and times. We present a simple analytic model for the runaway based upon a combination of stellar mixing-length theory and recent advances in understanding Rayleigh-Benard convection. The convective flow just prior to runaway is likely to have a strong dipolar component, though higher multipoles may contribute appreciably at the very high Rayleigh number (1025^{25}) appropriate to the white dwarf core. A likely outcome is multi-point ignition with an exponentially increasing number of ignition points during the few tenths of a second that it takes the runaway to develop. The first sparks ignite approximately 150 - 200 km off center, followed by ignition at smaller radii. Rotation may be important to break the dipole asymmetry of the ignition and give a healthy explosion.Comment: 14 pages, 0 figures, submitted to ApJ, corrected typo in first author's nam

    A new model for deflagration fronts in reactive fluids

    Full text link
    We present a new way of modeling deflagration fronts in reactive fluids, the main emphasis being on turbulent thermonuclear deflagration fronts in white dwarfs undergoing a Type Ia supernova explosion. Our approach is based on a level set method which treats the front as a mathematical discontinuity and allows full coupling between the front geometry and the flow field. With only minor modifications, this method can also be applied to describe contact discontinuities. Two different implementations are described and their physically correct behaviour for simple testcases is shown. First results of the method applied to the concrete problems of Type Ia supernovae and chemical hydrogen combustion are briefly discussed; a more extensive analysis of our astrophysical simulations is given in (Reinecke et al. 1998, MPA Green Report 1122b).Comment: 11 pages, 13 figures, accepted by A&A, corrected and extended according to referee's comment

    Direct Numerical Simulations of Type Ia Supernovae Flames II: The Rayleigh-Taylor Instability

    Full text link
    A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10710^7 g/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition.Comment: submitted to ApJ, some figures degraded due to size constraint

    Can Deflagration-Detonation-Transitions occur in Type Ia Supernovae?

    Get PDF
    The mechanism for deflagration-detonation-transition (DDT) by turbulent preconditioning, suggested to explain the possible occurrence of delayed detonations in Type Ia supernova explosions, is argued to be conceptually inconsistent. It relies crucially on diffusive heat losses of the burned material on macroscopic scales. Regardless of the amplitude of turbulent velocity fluctuations, the typical gradient scale for temperature fluctuations is shown to be the laminar flame width or smaller, rather than the factor of thousand more required for a DDT. Furthermore, thermonuclear flames cannot be fully quenched in regions much larger than the laminar flame width as a consequence of their simple ``chemistry''. Possible alternative explosion scenarios are briefly discussed.Comment: 8 pages, uses aastex; added references. Accepted by ApJ Letter

    Quasilinear Drift Of Cosmic Rays In Weak Turbulent Electromagnetic Fields

    Full text link
    A general quasilinear transport parameter for particle drift in arbitrary turbulence geometry is presented. The new drift coefficient is solely characterized by a nonresonant term and is evaluated for slab and two-dimensional turbulence geometry. The calculations presented here demonstrate that fluctuating electric fields are a key quantity for understanding quasilinear particle drift in slab geometry. It is shown that particle drift does not exist in unpolarized and purely magnetic slab fluctuations. This is in stark contrast to previous models, which are restricted to slab geometry and the field line random walk limit. The evaluation of the general transport parameter for two-dimensional turbulence geometry, presented here for the first time for dynamical magnetic turbulence, results in a drift coefficient valid for a magnetic power spectrum and turbulence decay rate varying arbitrarily in wavenumber. For a two-component, slab/two-dimensional turbulence model, numerical calculations are presented. The new quasilinear drift, induced by the magnetic perturbations, is compared with a standard drift expression related to the curvature and gradient of an unperturbed heliospheric background magnetic field. The considerations presented here offer a solid ground and natural explanation for the hitherto puzzling observation that drift models often describe observations much better when drift effects are reduced.Comment: 23 pages, 6 figures, accepted for publication in Ap

    Technology Supports for Individuals with Disabilities in New York State: A Survey of Current Status

    Get PDF
    This exploratory study examines the current use of instructional technology, and assistive technologies for support of individuals with learning disabilities as well as other disabilities in New York State. The researchers used SurveyMonkey and postings on social media websites for various professional organizations to solicit responses to a questionnaire from individuals working with or caring for persons with disabilities. A small sample of responses (N=122) revealed barriers to the use of technology, as well as the preferred type and most convenient for persons with disabilities. School districts may want to use this survey with students, parents and community members

    Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario

    Full text link
    We develop an improved method for tracking the nuclear flame during the deflagration phase of a Type Ia supernova, and apply it to study the variation in outcomes expected from the gravitationally confined detonation (GCD) paradigm. A simplified 3-stage burning model and a non-static ash state are integrated with an artificially thickened advection-diffusion-reaction (ADR) flame front in order to provide an accurate but highly efficient representation of the energy release and electron capture in and after the unresolvable flame. We demonstrate that both our ADR and energy release methods do not generate significant acoustic noise, as has been a problem with previous ADR-based schemes. We proceed to model aspects of the deflagration, particularly the role of buoyancy of the hot ash, and find that our methods are reasonably well-behaved with respect to numerical resolution. We show that if a detonation occurs in material swept up by the material ejected by the first rising bubble but gravitationally confined to the white dwarf (WD) surface (the GCD paradigm), the density structure of the WD at detonation is systematically correlated with the distance of the deflagration ignition point from the center of the star. Coupled to a suitably stochastic ignition process, this correlation may provide a plausible explanation for the variety of nickel masses seen in Type Ia Supernovae.Comment: 14 pages, 10 figures, accepted to the Astrophysical Journa

    Similarity and contrasts between thermodynamic properties at the critical point of liquid alkali metals and of electron-hole droplets

    Full text link
    The recent experimental study by means of time-resolved luminescence measurements of an electron-hole liquid (EHL) in diamond by Shimano et al. [Phys. Rev. Lett. 88 (2002) 057404] prompts us to compare and contrast critical temperature T_c and critical density n_c relations in liquid alkali metals with those in electron-hole liquids. The conclusion drawn is that these systems have similarities with regard to critical properties. In both cases the critical temperature is related to the cube root of the critical density. The existence of this relation is traced to Coulomb interactions and to systematic trends in the dielectric constant of the electron-hole systems. Finally a brief comparison between the alkalis and EHLs of the critical values for the compressibility ratio Z_c is also given

    Optical control of coherent interactions between quantum dot electron spins

    Full text link
    Coherent interactions between spins in quantum dots are a key requirement for quantum gates. We have performed pump-probe experiments in which pulsed lasers emitting at different photon energies manipulate two distinct subsets of electron spins within an inhomogeneous InGaAs quantum dot ensemble. The spin dynamics are monitored through their precession about an external magnetic field. These measurements demonstrate spin precession phase shifts and modulations of the magnitude of one subset of oriented spins after optical orientation of the second subset. The observations are consistent with results from a model using a Heisenberg-like interaction with microeV-strength.Comment: 5 pages, 4 figure
    • 

    corecore