2,107 research outputs found

    Driven diffusive systems with mutually interactive Langmuir kinetics

    Get PDF
    We investigate the simple one-dimensional driven model, the totally asymmetric exclusion process, coupled to mutually interactive Langmuir kinetics. This model is motivated by recent studies on clustering of motor proteins on microtubules. In the proposed model, the attachment and detachment rates of a particle are modified depending upon the occupancy of neighbouring sites. We first obtain continuum mean-field equations and in certain limiting cases obtain analytic solutions. We show how mutual interactions increase (decrease) the effects of boundaries on the phase behavior of the model. We perform Monte Carlo simulations and demonstrate that our analytical approximations are in good agreement with the numerics over a wide range of model parameters. We present phase diagrams over a selective range of parameters.Comment: 9 pages, 8 Figure

    Investigation of the Coupling Potential by means of S-matrix Inversion

    Get PDF
    We investigate the inelastic coupling interaction by studying its effect on the elastic scattering potential as determined by inverting the elastic scattering SS-matrix. We first address the effect upon the real and imaginary elastic potentials of including excited states of the target nucleus. We then investigate the effect of a recently introduced novel coupling potential which has been remarkably successful in reproducing the experimental data for the 12^{12}C+12^{12}C, 12^{12}C+24^{24}Mg and 16^{16}O+28^{28}Si reactions over a wide range of energies. This coupling potential has the effect of deepening the real elastic potential in the surface region, thereby explaining a common feature of many phenomenological potentials. It is suggested that one can relate this deepening to the super-deformed state of the compound nucleus, 24^{24}Mg.Comment: 12 pages with 3 figure

    Dynamic characteristics and processing of fillers in polyurethane elastomers for vibration damping applications

    Get PDF
    Polyurethane elastomers have the potential of being used to reduce vibrational noise in many engineering applications. The performance of the elastomer is directly related to matching the nature of the mechanical loss characteristics to the frequency and temperature dependence of the source of the vibration. Materials with a broad frequency response and good mechanical properties are desirable for situations were load bearing and isolation becomes an issue. Because automobile, and other related vehicles operate over a broad temperature range, it is desirable for the damping characteristics of the elastomer to ideally be independent of temperature and frequency. In practice, this is not possible and the creation of materials with a broad spectrum response is desirable. In this paper, the effects of various fillers on the breadth and temperature dependence of the vibration damping characteristics of a filled and crosslinked polyurethane elastomer are explored. The fillers studied are wollastonite, barium sulphate and talc. These materials have different shapes, sizes and surface chemistry and undergo different types of interaction with the matrix. The vibration damping characteristics were further varied by the use of a crosslinking agent. Data presented on the rheological characteristics indicate the strength of the filler-polyol interactions. Dielectric relaxation and dynamic mechanical thermal analysis demonstrate the way in which changes in the type of filler, concentration and amount of crosslinker lead to changes in the location and breadth of the energy dissipation process in these elastomers. The vibration damping characteristics of a selected material are presented to demonstrate the potential of these materials

    Magnetic anisotropy of vicinal (001) fcc Co films: role of crystal splitting and structure relaxation in step-decoration effect

    Full text link
    The uniaxial in-plane magnetic anisotropy (UIP-MA) constant is calculated for a single step on the (001) surface of fcc Co(NN) films. The calculations are done for both an undecorated step and the step decorated with one or more, up to 7, Cu wires. Our objective is to explain the mechanisms by which the decoration decreases the UIP-MA constant, which is the effect observed experimentally for ultrathin Co films deposited on vicinal (001) Cu surfaces and can lead to reorientation of magnetization within the film plane. Theoretical calculations performed with a realistic tight-binding model show that the step decoration changes the UIP-MA constant significantly only if the splitting between the on-site energies of various dd-orbitals is included for atoms located near the step edge. The local relaxation of atomic structure around the step is also shown to have a significant effect on the shift of the UIP-MA constant. The influence of these two relevant factors is analyzed further by examining individual contributions to the UIP-MA constant from atoms around the step. The magnitude of the obtained UIP-MA shift agrees well with experimental data. It is also found that an additional shift due to possible charge transfer between Cu and Co atoms is very small.Comment: 12 pages,9 figures, RevTeX, submitted to Physical Review B version 3: additions to content version 2: minor correction

    Barrier and internal wave contributions to the quantum probability density and flux in light heavy-ion elastic scattering

    Get PDF
    We investigate the properties of the optical model wave function for light heavy-ion systems where absorption is incomplete, such as α+40\alpha + ^{40}Ca and α+16\alpha + ^{16}O around 30 MeV incident energy. Strong focusing effects are predicted to occur well inside the nucleus, where the probability density can reach values much higher than that of the incident wave. This focusing is shown to be correlated with the presence at back angles of a strong enhancement in the elastic cross section, the so-called ALAS (anomalous large angle scattering) phenomenon; this is substantiated by calculations of the quantum probability flux and of classical trajectories. To clarify this mechanism, we decompose the scattering wave function and the associated probability flux into their barrier and internal wave contributions within a fully quantal calculation. Finally, a calculation of the divergence of the quantum flux shows that when absorption is incomplete, the focal region gives a sizeable contribution to nonelastic processes.Comment: 16 pages, 15 figures. RevTeX file. To appear in Phys. Rev. C. The figures are only available via anonynous FTP on ftp://umhsp02.umh.ac.be/pub/ftp_pnt/figscat

    Influence of single-neutron stripping on near-barrier <sup>6</sup>He+<sup>208</sup>Pb and <sup>8</sup>He+<sup>208</sup>Pb elastic scattering

    Get PDF
    The influence of single-neutron stripping on the near-barrier elastic scattering angular distributions for the 6,8He+208Pb systems is investigated through coupled reaction channels (CRC) calculations fitting recently published data to explore the differences in the absorptive potential found in the scattering of these two neutron-rich nuclei. The inclusion of the coupling reduces the elastic cross section in the Coulomb-nuclear interference region for 8He scattering, whereas for 6He its major impact is on the large-angle elastic scattering. The real and imaginary dynamic polarization potentials are obtained by inverting the CRC elastic scattering S-matrix elements. These show that the main absorptive features occur between 11 and 12 fm for both projectiles, while the attractive features are separated by about 1 fm, with their main structures occurring at 10.5 fm for 6He and 11.5 fm for 8He

    Cross-link governed dynamics of biopolymer networks

    Get PDF
    Cytoskeletal networks of biopolymers are cross-linked by a variety of proteins. Experiments have shown that dynamic cross-linking with physiological linker proteins leads to complex stress relaxation and enables network flow at long times. We present a model for the mechanical properties of transient networks. By a combination of simulations and analytical techniques we show that a single microscopic timescale for cross-linker unbinding leads to a broad spectrum of macroscopic relaxation times, resulting in a weak power-law dependence of the shear modulus on frequency. By performing rheological experiments, we demonstrate that our model quantitatively describes the frequency behavior of actin network cross-linked with α\alpha-Actinin-44 over four decades in frequency.Comment: 4 page

    Simulation of associative learning with the replaced elements model

    No full text
    Associative learning theories can be categorised according to whether they treat the representation of stimulus compounds in an elemental or configural manner. Since it is clear that a simple elemental approach to stimulus representation is inadequate there have been several attempts to produce more elaborate elemental models. One recent approach, the Replaced Elements Model (Wagner, 2003), reproduces many results that have until recently been uniquely predicted by Pearce’s Configural Theory (Pearce, 1994). Although it is possible to simulate the Replaced Elements Model using “standard” simulation programs the generation of the correct stimulus representation is complex. The current paper describes a method for simulation of the Replaced Elements Model and presents the results of two example simulations that show differential predictions of Replaced Elements and Pearce’s Configural Theor

    The Last Glacial Maximum in Central North Island, New Zealand: Palaeoclimate Inferences from Glacier Modelling

    Get PDF
    Quantitative palaeoclimate reconstructions provide data for evaluating the mechanisms of past, natural climate variability. Geometries of former mountain glaciers constrained by moraine mapping afford the opportunity to reconstruct palaeoclimate, due to the close relationship between ice extent and local climate. In this study, we present results from a series of experiments using a 2D coupled energy-balance/ice-flow model that investigate the palaeoclimate significance of Last Glacial Maximum m oraines within nine catchments in the central North Island, New Zealand. We find that the former ice limits can be simulated when present-day temperatures are reduced by between 4 and 7 â—¦C, if precipitation remains unchanged from present. The spread in the results between the nine catchments is likely to rep- resent the combination of chronological and model uncer- tainties. The majority of catchments targeted require tem- perature decreases of 5.1 to 6.3 â—¦ C to simulate the former glaciers, which represents our best estimate of the tempera- ture anomaly in the central North Island, New Zealand, dur- ing the Last Glacial Maximum. A decrease in precipitation of up to 25 % from present, as suggested by proxy evidence and climate models, increases the magnitude of the required temperature changes by up to 0.8 â—¦ C. Glacier model experi- ments using reconstructed topographies that exclude the vol- ume of post-glacial (\u3c 15 ka) volcanism generally increased the magnitude of cooling required to simulate the former ice limits by up to 0.5 â—¦ C. Our palaeotemperature estimates ex- pand the spatial coverage of proxy-based quantitative palaeo- climate reconstructions in New Zealand. Our results are also consistent with independent, proximal temperature recon- structions from fossil groundwater and pollen assemblages, as well as similar glacier modelling reconstructions from the central Southern Alps, which suggest air temperatures were ca. 6 â—¦ C lower than present across New Zealand during the Last Glacial Maximum
    • …
    corecore