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ABSTRACT 

Polyurethane elastomers have the potential of being used to reduce vibrational noise in 

many engineering applications. The performance of the elastomer is directly related to 

matching the nature of the mechanical loss characteristics to the frequency and temperature 

dependence of the source of the vibration. Materials with a broad frequency response and 

good mechanical properties are desirable for situations were load bearing and isolation 

becomes an issue. Because automobile, and other related vehicles operate over a broad 

temperature range, it is desirable for the damping characteristics of the elastomer to ideally 

 



 
 
 

  
 

be independent of temperature and frequency. In practice, this is not possible and the 

creation of materials with a broad spectrum response is desirable.  

 

In this paper, the effects of various fillers on the breadth and temperature dependence of the 

vibration damping characteristics of a filled and crosslinked polyurethane elastomer are 

explored. The fillers studied are wollastonite, barium sulphate and talc. These materials 

have different shapes, sizes and surface chemistry and undergoe different types of 

interaction with the matrix. The vibration damping characteristics were further varied by 

the use of a crosslinking agent. 

 

Data presented on the rheological characteristics indicate the strength of the filler –polyol 

interactions. Dielectric relaxation and dynamic mechanical thermal analysis demonstrate 

the way in which changes in the type of filler, concentration and amount of crosslinker lead 

to changes in the location and breadth of the energy dissipation process in these elatomers. 

The vibration damping characteristics of a selected material are presented to demonstrate 

the potential of these materials. 

  

1   INTRODUCTION  

Vibrational damping is a problem encountered in a variety of different ways and is 

particularly important where noise abatement is an issue. The approach which is adopted 

will depend on the details of the particular application and whether or not the damping 

system is part of a load bearing structure. Generally, vibration can be reduced using various 

anechoic coatings but the materials from which these are created are often non load bearing 

[1]. Foamed polyurethane - PU materials - are commonly used for car seats and their 

damping characteristics have been extensively investigated [2-4]. In general, the damping 

characteristics correlate well with the mechanical energy dissipation characteristics of the 

material. Matching the maximum energy loss with the vibrational maximum frequency 

leads to an optimum design for the damping characteristics of the system. In the case of 

foams, the added complication arises that the level of compression can influence the energy 

dissipation characteristics. 

 



 
 
 
Solid PUs can be used directly as part of vibrational damping systems where load-bearing 

characteristics are important. There are at least two approaches to the problem of vibration 

damping; firstly, constrained layer damping in which an intermediate material is used to 

couple a high modulus layer to the substrate to be damped and secondly, surface layer 

damping where the coating attempts to remove the energy through a dissipative process. [5-

12]. In both cases the damping characteristics are dictated by the energy dissipation 

characteristics of the polymer used. In this paper, the focus will be on the design of the 

material which can be used with either approach. 

  

A large number of polymer systems have been investigated in the context of energy 

damping media and include epoxy, [5,11] epoxy/carbon fibre [5], polymethylmethacrylate 

– PMMA [6,9], polytetrafluoroethylene - PTFE [6] and nylon 6,6’ [10] with varying 

degrees of success. PU systems have a significant advantage for energy damping 

applications in that it is relatively easy to change the formulation of the elostomer to 

achieve the desired match between energy loss and the vibration characteristics of the 

system concerned [8,11]  The damping characteristics of PUs can be varied by changing the 

isocyanate composition and  type of diol to yield materials with different damping 

characteristics. [8,13]. However, the breadth of the loss peak for the typical PU is relatively 

narrow which imparts a significant temperature dependence of the damping behaviour. In 

order to use PUs for load bearing applications it is desirable to have a material with a high 

modulus yet retain the high loss characteristics. These are apparently contradictory 

requirements but can be designed into a material if phase separation occurs [14,15]. 

Additional increases in the modulus can be achieved by the incorporation of fillers [5]. The 

effects which will be produced will depend on the shape, volume fraction and surface 

chemistry of the filler used [5]. This paper describes a study in which the effects of 

incorporation of talc, silica, wollastonite and barium sulphate on the damping 

characteristics of a typical PU are explored. An additional variable explored is the effect of 

change in the crosslink density by the additional of a poly functional alcohol to the 

formulation.   

 

  
 



 
 
 

  
 

The fillers investigated have the following characteristics. Wollastonite is a natural calcium 

meta-silicate (CaSiO3), formed by the metamorphism of siliceous limestone at temperatures 

around 450oC and higher [16]. Wollastonite is an example of a tri-clinic crystal with no 

symmetry elements. The surface of wollastonite readily absorbs water and hydroxylated by 

the Ca2+/2H+ exchange reaction resulting in a surface characterized by a twisted, three silica 

tetrahedra unit. The chains formed by these silica tetrahedral are connected side by side 

through calcium in octahedral coordination and results in wollastonite growing as acicular 

crystals, having a high density and modulus (16). Densified hydrophilic fused silica, 

AEROSIL® 200 VV 50 has a specific surface area of ~200 m2/g and is spherical in 

structure. Talc is hydrated magnesium silicate and usually has a distribution of particle 

sizes. Barium sulphate has a nodular particle structure, which is processed from Barytes ore 

to have a BaSO4 content of 86.9%. 

 

The paper explores the rheological characteristics of the polyol filled resins as a means of 

characterising the nature of the dispersion achieved and the strength of the interactions 

between polyol and filler.  Dielectric relaxation and dynamic mechanical thermal analysis 

are used to demonstrate the way in which formulation changes influence the breadth and 

location of the energy loss processes. Finally a study of the damping characteristics of one 

of the materials will be presented to show how these materials may be used in vibration 

damping applications.     

 

2 EXPERIMENTAL DETAILS  

2.1  Materials    

The polyurethane elastomers – PUs, were synthesised using poly(tetra methylene glycol) – 

PTMEG, with Mn ~1000, mpt ~32ºC and equivalent weight of 498g, supplied by BASF; 

Trimethylopropane -TMP, as a cross linker agent, mpt ~56ºC and equivalent weight of 

144g, supplied by Aldrich. Two methylenediphenyldisocynates -MDI were used; Hyperlast 

M143 and Suprasec 5005 with isocyanate equivalents of 2 and 2.7 respectively.  The 

Hyperlast MDI was pre-polymerised at a 2:1 ratio with the poly(tetra-methylene glycol) to 

yield an average functionality of two. The Suprasec 5005 is a polymeric MDI. The details 

of the fillers used, their source and characteristics are summarised in Table (1).  



 
 
 
 

Material Supplier  Mean 
particle size 

Particle 
Shape 

Density  
g/cm3 

Wollastonite  Boud 
Minerals 

45μm Fibre aspect 
ratio 20:1  

2.6 

Barium 
Sulphate 

Boud 
Minerals  

12.1μm Nodular 4.4 

Silica Degussa 12nm n/a 1.35 
Talc Viaton 

Industries 
15μm Lamellar  2.7 

 

 

 

 

 

 

Table (1) Characteristics of fillers used in creating the composite PU elastomers. 

 

2.2 Synthesis of polyurethane elastomeric materials 

The PTMEG and TMP, were heated to +60oC and degassed for 20 minutes at <1 mbar. The 

fillers were added and the mix stirred under vacuum for 10min. The isocyanate, Hyperlast 

M143 or Suprasec 5005, were added at the stochiometric ratio, mixed at room temperature 

under vacuum, for 12 min, and then poured into the mould. The mould was constructed of 

mild steel, with a base plate 1 cm thick. Side bars of 10 mm x 10 mm are added to create a 

rectangular test specimen of dimensions 80 mm x 100 mm x 10 mm. The cure temperature 

was 60˚C and cure occurred over a period of 16 hours. The amount of filler was recorded as 

the volume percentage of poly(tetramethylene glycol) used as the dispersion phase. 

 

2.3 Rheological measurements 

Rheological measurements were carried out using a CSL-2 TA instrument with a 2cm 

parallel plate with a 500μm gap at 40˚C. Care was taken to ensure that the fluid filled the 

gap at all times. 

 

2.4 Dielectric relaxation measurements 

 Thin films for dielectric measurements were created by pouring the PU mixture onto PTFE 

coated glass and uniform films were created using a spreader bar. Aluminium electrodes 

were evaporated onto the samples using an Edwards Coating System E306A. A 

Novocontrol frequency response analyser was used to cover the frequency range 0.1 Hz to 

6.5 x 105 Hz and the temperature was controlled to better than  + 0.5°C. 

 

  
 



 
 
 
2.5 Dynamic Mechanical Thermal Analysis – DMTA.   

Dynamic mechanical measurements were conducted using a Polymer Laboratories Ltd 

DMTA.  Rectangular samples 10 mm x 20 mm and ~2mm thickness were clamped using a 

single cantilever mode of action and knife-edge clamping arrangement with a clamping 

torque of 40Nm. The scanning frequency was 10Hz and the samples were re-clamped at 

low temperatures to minimise slippage. In the case of multi-frequency DMTA, frequencies 

of 0.3, 3, 10 and 30 Hz were used. 

 

2.6 Optical microscopy  

 To assess the shapes of the fillers optical microscopy was performed on samples deposited 

on slides. The wollastonite samples were prepared in acetone and placed on a glass slide 

after sonicating for 5 min in an ultrasonic bath and the acetone allowed to evaporate. 

Optical microscopy was carried out using a bifocal microscope at 120x magnification with 

a Nikon digital camera.  

 

2.7 Vibration damping analysis. 

Samples were prepared for vibration analysis by coating metal substrates of dimensions 50 

x 10 x 1cm with the test formulations. The coated beam was excited at various frequencies 

and the energy dissipation measured over a temperature range from 0-30oC.  

 

3.0 RESULTS AND DISCUSSION 

3.1 Microscopy 

In order to understand the effects of various fillers on the observed physical properties it is 

essential that the typical shapes of these materials are determined. The optical microscopy 

of barium sulphate (Figure (1A)) has a granular structure and a rough surface topography. 

The optical microscopy of Wollastonite (Figure(1B)) indicates that it exists as long needle 

of varying particle sizes and aspect ratios and confirm the data in Table (1). 

 
3.2 Rheology 

 The effect of a filler on the polymer system to which they are added, depends critically on 

the nature of the dispersion which is initially achieved.  In order to assess the effects of the 

  
 



 
 
 

  
 

fillers on the monomers, rheological measurements were carried out over shear rates from 

0.6 to 600 s-1, as a function of filler concentration, Figure (2A). 

 
  [A]       [B]  

Figure (1) Optical Micrographs of the filler materials; [A] Barium Sulphate stirred with 

acetone; spherical particles and aggregates, [B] Wollastonite and Barium Sulphate 

sonicated with acetone for 10min, showing distribution of rod and spherical particles. 
 
The addition of low levels of wollastonite to the poly(tetra-methylene glycol) up to 13 

vol%, has little effect on the viscosity of the system and little shear thickening is observed. 

 

Figure (2) Increasing percentage of Wollastonite in polyol; Key:-  - 23.5 vol%, ♦ - 22.3 
vol%;▼- 21.2 vol%;▲- 20 vol%, measurements with increasing shear rate (0.6 – 600 s-1) 



 
 
 

and □ – 23.5 vol%, ◇ -22.3 vol%,∇- 21.2vol%,△ – 20vol% with decreasing shear rate 
(600 -0.6 s-1).  
 

At higher loading levels > 20 vol %, the initial viscosity at low shear rates is several orders 

of magnitude greater than that at high shear rates, indicating the thickening effect of filler 

on the polyol phase. The thickening effect is associated with filler – filler interactions 

creating a network structure in the liquid phase. Increasing the shear rate leads to a marked 

reduction in the viscosity and at a shear rate of 600 s-1, the viscosity is close to that of the 

polyol. Measurement of the sample which has been sheared and then the shear rate is 

reduced from 600 – 0.6 s-1 indicate values which are close to those of the polyol. This 

behaviour is indicative of the filler forming a temporary network which leads to the 

observed initial high viscosity but is reduced by flow alignment of the particles. The 

wollastonite with an aspect ratio typically of 20:1 is very effective in creating transient 

structures and enhances the viscosity at low shear rates. Repeating the experiments on 

dispersions which had been allowed to rest for five minutes indicated that the structure had 

almost completely recovered over this period. This enhancement in the low shear viscosity 

can potentially produce problems for mixing of the components to form the final reaction 

mixture. 

 

In order to reduce the structure forming effects three samples of fillers with mixed shapes 

were prepared. The viscosity curves for these samples are shown in Figure (3). The addition 

of as little as 2.5 vol% of silica markedly reduces the ability for the wollastonite to form a 

network structure and decreases the initial value of the low shear viscosity. The addition of 

the barium sulphate leads to a further reduction in the low shear viscosity and a lower shear 

dependence. The apparent increase in the high shear values reflects the higher solid loading 

of the system. It is envisaged that the silica particles interfere with the structure build up of 

the wollastonite fibres, and acts as a lubricant easing the relative movement of the fibres 

passed one another hindering the build up of the structure. The addition of barium sulphate 

decreases the initial viscosity still further. 

 

  
 



 
 
 
The rheological studies indicate that the critical level for the addition of wollastonite is ~ 20 

vol%, although the network forming tendency of this filler in liquid dispersions can be 

reduced by the addition of small amounts of spherical fillers, hence allowing the total solids 

content to be significantly increased in the formulations without encountering mixing 

problems.    

 

3.3 Relaxation behaviour of filled systems 

The principal aim of this investigation was to explore the effects of the functionality of the 

isocyanate, effects of cross linker and possible interactions with fillers on the energy loss 

characteristics of the PU matrix composites. In the design of a final material all the 

influences can be brought into play in adjusting the characteristics of the composite to be fit 

for purpose. 

 
Figure (3) Variation of viscosity with shear rate of initial samples, with sample 1;▼ (0.6 – 
600s-1) and ∇ (600 – 0.6s-1) flow curves. Sample 2; ▲ (0.6 – 600s-1) and △ (600 – 0.6s-1) 

flow curves. Sample 3;  (0.6 – 600s-1) and □ (600 – 0.6s-1) flow curves. 
 

  
 



 
 
 
Sample 1 represents a 23.5 vol% of  wollastonite; sample 2, contains 1.0 vol% of silica, 

23.2% wollastonite and sample 3, contains 21.7vol% of wollastonite, 0.99 vol% silica, 6.4 

vol% barium sulphate (spherical form).   

 

3.3.1 Effect of filler on the PU matrix relaxation 

Dielectric relaxation and DMTA measurements were performed on a Hyperlast M143: 

polyol of unfilled and uncross linked PU matrix (Figure (4)). The main feature in the 

dielectric spectrum, is a strong dipolar relaxation feature associated with the reorientation 

of the ether linkage of the poly(tetramethyleneoxide)- TMO segment.  

 

 

[A] 

 
[B] 

  
 



 
 
 

 
[C] 

Figure (4) Dielectric relaxation permittivity [A] and loss [B] as a function of temperature 
between 213 K and 248 K and multi frequency DMTA [C] for unfilled uncrosslinked PU. 
Key for dielectric measurements:-  -600C, ● -55oC, ▲- 50oC, ▼ -45oC, + -35oC, x – 

30oC, * -25oC. Key for DMTA measurements:- Modulus at ◆ - 0.3 Hz, ▼- 3 Hz, ▲-10 

Hz, and  – 30 Hz and loss:- ◇ – 0.3 Hz, ∇ - 3 Hz, ∆ - 10 Hz, □ – 30 Hz. 
 

The relaxation spreads over three decades of frequency and is typical of a simple thermally 

activated segmental reorientation process. The sharp rise in the dielectric loss at very low 

frequencies is associated with ionic conduction in the material and increases in amplitude 

as the temperature is increased. The corresponding DMTA traces are shown in Figure (4C). 

From the shift of the dielectric or mechanical loss peak with temperature it is possible to 

determine the Arrhenius activation energy for the segmental reorientation of the TMO 

segment which dictates the temperature dependence of the energy dissipation. The linearity 

of the Arrhenius plot (Figure (5)), indicates that the process is thermally activated and 

values of the derived energy are presented in Table (2). It is apparent that wollastonite has 

the ability to interact strongly with the PU matrix and significant shifts are observed in the 

relaxation frequency plot and the temperature dependence with increasing filler content. 

Interestingly, barium sulphate does not appear to shift the relaxation in the same way 

reflecting significantly weak interactions between PU and filler. It is clear that the barium 

  
 



 
 
 

  
 

sulphate has little effect on either the dynamic mechanical or dielectric relaxation of the 

resin. 

 
  Figure (5) Arrhenius plots for the dielectric relaxation data for various filled PU 
composites. Key:-  - unfilled PU, ● – 3wt% Barium sulphate, ▲- 6wt% Barium 
sulphate, ▼- 3wt% wollastonite, ◆ –  6wt% wollastonite.  
 

Wollastonite  
by % volume  

BaSO4 
by % volume 

Aerosil 200 
by % volume 

Activation Energy  
 kJ mol-1 

0 0 0 223 + 25 
3 0 0 200 + 25 
6 0 0 185 + 25 
0 3 0 189 + 25 
0 6 0 214 + 25 

 

Table (2) Variation of activation energy with filler content. 

 This is confirmed in the dielectric relaxation with a shift towards higher temperatures and 

the activation energy at 6wt% wollastonite increases significantly suggesting interaction of 

the  TMO segments with the surface of the wollastonite fibre. Normally interaction between 

the polymer and the surface tightens the matrix and increases the activation energy and this 

does not appear to be the case with the TMO PU elastomers. It has been observed in other 

systems that a shift in the relaxation is observed without change in the activation energy 

and this can be attributed to ‘energy starvation’.  Since the relaxation is thermally activated 

the probability of reorientation occurring depends on the energy being fed into the 



 
 
 
reorientational motion. It appears that the weak interactions between the ether linkages and 

the filler allow the filler to act as a heat sink and reduce the pre-exponential factor in the 

Arrhenius equation. The reduced energy flow produces a lower probability of activation of 

the reorientational process and a shift of the relaxation feature along the temperature axis.       

 

3.3.2 Effect of crosslinker.  

The increasing levels of cross linker TMP will influence the ability for MDI to form a hard 

phase structure and leads to changes in the density of packing and also changes the 

dielectric relaxation behaviour (Figure (6)).   

 
[A] 

 

  
 



 
 
 
      [B] 

Figure (6) Dielectric permittivity [A] and dielectric loss [B] for 10% cross linked PU 

system. Key:- ● -30oC,  - 40oC, ◆ – 50oC, ▲- 60oC, + - 700C, x – 750C * - 800C. 

 

The change in the distribution of MDI structural types will impact on the nature of the 

distribution of TMO which will consequently broaden the dipole relaxation and 

consequently reduce the temperature dependence of the overall process.  The phase 

separated nature of the PU leads to observation of polarization effects associated with the 

heterogeneous nature of the polymer. Ionic impurities can migrate within the polymer and 

become trapped at the interfaces created by the phase separated MDI and gives rise to the 

so-called Maxwell Wagner Sillars process. Unfortunately, this latter process dominates the 

low frequency relaxation region (Figure (6)) and makes analysis of the breadth of the 

dipolar relaxation associated with the ether segments difficult. The relaxation can be seen 

as the broad peak in the dielectric loss in Figure (6B). The polyurethane entities are phase 

separated, and because they are extensively hydrogen bonded will not contribute to the 

dipole relaxation until the hard phase ‘melts’, which occurs at ~ 150oC. It is however clear 

from the plots that the relaxation is broad and extends over several decades of frequency. 

The DMTA analysis gives a direct indication of the mechanical properties and was used to 

explore the effects of changes of filler and crosslinker. 

   

3.4  Dynamic Mechanical Thermal Analysis 

3.4.1 Effects of filler 

Damping of metallic structures depends on the efficiency of being able to couple energy 

into the structure and is primarily controlled by being able to match the modulus of the 

coating layer to that of the substrate. Wollastonite is a fibrous material with an aspect ratio 

of 20:1; and a small volume fraction of fibres can increase both the low and high 

temperature modulus of the system (Figure (7)) which will improve the match with the 

rigid substrate. The high temperature modulus is determined by two factors; the extent of 

cross linking in the material and the degree of interaction between matrix and filler. Barium 

sulphate at low levels of addition has little effect on the high temperature modulus or tan δ 

  
 



 
 
 

  
 

indicating relatively weak interaction between filler and matrix. In contrast, wollastonite 

shifts the relaxation to higher temperatures showing significant interaction between the 

fibre surface and the resin matrix. 

 
Figure (7) DMTA of uncrosslinked system with 6w/v% BaSO4 and 6 w/v% Wollastonite. 

Key:- Modulus -  - unfilled PU, ♦-  6wt/v% BaS04, ▲-6wt/v% Wollastonite; Loss□ – 

unfilled PU, ◇ -6wt/v% BaSO4, Δ -6wt/v% Wollastonite. 

 

3.4.2 Effect of change of functionality of the MDI 

A series of experiments were conducted on materials created with high and low functional 

MDI. Figure (8) shows the variation in E’ and tan δ with variation in the level of cross 

linker. The most notable difference between the MDIs is the breadth of the relaxation; with 

the high functionality MDI giving tan δ significantly broader than the lower functionality 

MDI. The increase in breadth is a consequence of the greater variety of structures generated 

by the use of polymeric MDI for the TMO. The isocyanate is partially inhibited in packing 

to form the organised hard phase structure which predominates in the lower functional 

MDI. The variation in the environments is reflected in the breadth in the relaxation process 

being increased. The crosslinker will tighten up the matrix and this is reflected in a shift in 

the tan δ to higher temperatures and further broadening of the loss peak. Change of the 

level of the crosslinker allows the peak to be shifted form from ~-5oC for 6% TMP to a 



 
 
 
value of ~ 50oC for 14% of TMP. From the point of view of matching of the peak to the 

optimum value for the damping of the vibration changing of the level of crosslinker is a 

relatively simple procedure.  

 
[A] 

 
[B] 

Figure (8) DMTA traces for various levels of crosslinker (trimethylolpropane) TMP with 
[A] Suprasec MDI, functionality - 2.7,  Key:- Modulus ♦ - 4% TMP, • - 6% TMP, ▼- 
8%▲- 12% and  -14%, Loss ◇ -4%, ○ – 6%, ∇ - 8%, ∆ - 12% and and □ – 14%. [B] 
Hyperlast MDI, functionality - 2, Key:- Modulus ◆ – 6%,  - 10%, ▲ – 12%, ▼ – 14%, 
Loss ◇ – 6%, □ – 10%, ∆ - 12%, ∇ - 14%. 

  
 



 
 
 
 
The effect of variation of the level of crosslinker for the Hyperlast MDI was also 

investigated. The Hyperlast MDI is created by end capping a TMO polymer and has a 

functionality of two.  Polymerisation with the TMO will create a very regular structure 

which phase separates to form regions of polyurethane which are extensively hydrogen 

bonded.  The phase separation produces a well defined environment for the TMO and the 

relaxation which is observed is fairly narrow (Figure (8B)). As in the case of the polymeric 

MDI the crosslinker TMP will increase the variety of environments experienced by the 

TMO and this is reflected in a broadening of the relaxation peak and a shift to higher 

temperatures. The effects of the crosslinker as less marked than with the polymeric MDI, 

the peak being shifted from a temperature of ~-200C to 200C by the addition of 8% of TMP. 

However as in the case of the polymeric MDI the possibility of tuning the peak to a 

particular temperature is also possible.     

 

3.4.3 Combining filler and cross linked effects 

It is apparent that changes in the damping behaviour can be achieved by either variation of 

the type of filler or the level of cross linker (Figure (9)).  

 

  
 



 
 
 

) The DMTA traces for Suprasec 5005, with 6vol% Wollastonite with variation in 

 Wollastonite filled material. 

e shift is clearly related to the effect of the crosslinker which is not significantly 

To explore the effect of variation of the filler, samples were created at low - 6% and higher 

-14% crosslinker level and with variation of the filler type (Figure (10)).  

Figure (9
cross linker TMP, Key:- Modulus ▼ - 6% TMP, ▲ - 8% TMP, ♦- 12% and  -14%, Loss 

∆ -6%, – 6%, ∇ - 8%, ∆ - 12% and and □ – 14%. 
 

Increasing the level of the crosslinker TMP has the expected effect of increasing the 

temperature at which the loss peak is observed for the 6 vol%

Th

influenced by the presence of the fibrous Wollastonite filler. 

  

 
[A] 

  
 



 
 
 

 
[B] 

igure (10) The DMTA traces for Suprasec 5005, with Wollastonite , Wollastonite and 
 6% TMP. Key:- 

 sulphate, ∇ - Wollastonite + talc.  
 

It is apparent that variation of the filler type has a very small effect on the location of the 

relaxation which is controlled primarily by the level of cross linker which is incorporated in 

the matrix. The insensitivity to the type of filler therefore allows both the level and the filler 

to be varied to achieve a better match between the substrate and the absorber for damping 

applications.    

 

3.4.4 Vibration damping behaviour of the filled PU matrix materials. 

Using the above data a series of beams were prepared and explored to determine the 

damping characteristics. An example of the data obtained for a sample that contains 22vol 

% of   Wollastonite, 20vol% of barium sulphate and 6% cross linker as shown in Figure 

(11).  

 

F
barium Sulphate and Wollastonite with talc. [A] low crosslinker density 
Modulus  - Wollastonite, ▲ – Wollastonite + Barium sulphate,  ▼ – Wollastonite + talc. 
Loss □ – Wollastonite, ∆ - Wollastonite + Barium sulphate, ∇ - Wollastonite + talc. [B] 
high crosslinker density -14% TMP, Key:- Modulus  - Wollastonite, ▲ – Wollastonite + 
Barium sulphate,  ▼ – Wollastonite + talc. Loss □ – Wollastonite, ∆ - Wollastonite + 
Barium

  
 



 
 
 

 
Figure (11) Plots of the loss factor, frequency and temperature dependence of the loss 

ed of 22 vol% of  Wollastonite,  20vol% of barium sulphate and 

 this formulation would have a loss feature which 

ans the frequency and temperature range. It is apparent that the interaction between the 

factor for a matrix compos

6% cross linker. 

 

Over the frequency range 1Hz to 1500Hz and over the temperature range 0 to 300C there is 

a significant damping of the vibration. The observed behaviour is consistent with the 

predictions from the DMTA data that

sp

PU and the metallic substrate has aided the achievement of the desired breadth of vibration 

damping. This example illustrates the ability to design damping systems with a broad 

frequency response based on data obtained using DMTA data.     

 

4  CONCLUSIONS 

This study illustrates how by changing the formulation of the PU it is possible to change 

the location, breadth and amplitude of the mechanical loss to suit the requirements of a 

material for effective vibration damping. This study has therefore a large number of 

potential applications in the use of materials for damping a variety of structures used in 

mechanical engineering applications.   

 

  
 



 
 
 

uires control of the density and the modulus of the material. By 

ppropriate selection of the barium sulphate, which imparts a significant density increase 

ch helps control the loss characteristics and the location of the loss 

rm this study is the ability to shift the loss feature by use of cross linker, but the 

ss characteristics are sensitive to the nature of the isocyanate used. The polymeric 

ith its restricted ability to pack is influenced more extensively by the addition 

MO exists at 

se 

esult in a greater sensitivity of 

ements 

., Acoustic and mechanical properties of polyurethanes based on 

AK, Davies P, J. Sound & Vibration 264  (2003) 49.  

ing applications, Deng R, Davies P, Bajaj AK, J. Sound &Vibration 262 

ghi F, Plumtree A, International J. of Fatigue 23 (2001) 491 

 layers in a polymer-matrix composite, 

Carbon, 33 (1995) p1626  

For effective vibration damping the material requires to have a good impedance match to 

the substrate and this req

a

and Wollastonite whi

feature and enhancement of the stiffness – bending modulus. A striking feature which 

emerges fo

lo

isocyanate w

of the cross linker than the simpler chain extended isocyanate. The low temperature 

dependence is a result of the broad distribution of environments in which the T

a molecular level. The chain extended isocyanate tends to be more effective at pha

separation and exhibits narrower loss features which will r

the loss to temperature.  
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