154 research outputs found
Palaeontology, the biogeohistory of Victoria
The broad-scale distribution of fossils within Victoria is controlled by general global patterns in the biological evolution of life on Earth, the local development and environmental evolution of habitats, and the occurrence of geological processes conducive to the preservation of fossil floras and faunas. Early Palaeozoic fossils are mostly marine in origin because of the predominance of marine sedimentary rocks in Victoria and because life on land was not significant during most of this time interval. Middle Palaeozoic sequences have both terrestrial and marine fossil records. Within Victoria, marine rocks are only very minor components of strata deposited during the late Palaeozoic, so that few marine fossils are known from this time period. A similar situation existed during most of the Mesozoic except towards the end of this era when marine conditions began to prevail in the Bass Strait region. During long intervals in the Cainozoic, large areas of Victoria were flooded by shallow-marine seas, particularly in the southern basins of Bass Strait, as well as in the northwest of the State (Murray Basin). Cainozoic sediments contain an extraordinary range of animal and plant fossils. During the Quaternary, the landscape of Victoria became, and continues to be, dominated by continental environments including, at times, extensive freshwater lake systems. Fossil floras and faunas from sediments deposited in these lake systems and from other continental sediments, as well as from Quaternary sediments deposited in marginal marine environments, collectively record a history of rapid fluctuations in climate and sea level.<br /
Controls on gut phosphatisation : the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)
Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods--typically the most diverse fossilised organisms in Cambrian ecosystems--where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace
Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration
The cellular response to hypoxia (low oxygen pressure) is vital for skeletal tissue development and regeneration. Numerous processes, including progenitor cell recruitment, differentiation and angiogenesis, are activated via the hypoxia pathway. Novel materials-based strategies designed to activate the hypoxia pathway are therefore of great interest for orthopaedic tissue engineering. Resorbable bioactive glasses (BGs) were developed to activate the hypoxia pathway by the controlled release of cobalt ions (at physiological relevant concentrations) whilst controlling BG apatite-forming ability. Two series of soda-lime-phosphosilicate glasses were synthesised with increasing concentrations of cobalt. Compositions were calculated to maintain constant network connectivity (2.13) by considering that cobalt is taking part in the network in the first series, and is acting as a network modifier in the second series. Mg2+ and Zn2+ were added to one of the Co2+-containing glasses to inhibit HCA formation. The presence of HCA formation is undesirable for the use of BG in soft tissues e. g. cartilage. Cobalt was present in both the silicate and phosphate phases of the BG. In addition, evidence was found that it plays a dual role in the silicate phase, entering the network as well as disrupting it as a network modifying oxide. Consistent with this dual role, the presence of cobalt in the BG was shown to decrease ion release. HCA formation was delayed with cobalt addition as well as incorporation of Mg2+ and Zn2+ into the BGs. Importantly, cobalt release was found to be proportional to cobalt content of the BGs enabling the controlled delivery of cobalt in therapeutically active doses
Development and Validation of Computational Fluid Dynamics Models for Prediction of Heat Transfer and Thermal Microenvironments of Corals
We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching
A stem-group cnidarian described from the mid-Cambrian of China and its significance for cnidarian evolution
Palaeontological data of extinct groups often sheds light on the evolutionary sequences leading to extant groups, but has failed to resolve the basal metazoan phylogeny including the origin of the Cnidaria. Here we report the occurrence of a stem-group cnidarian, Cambroctoconus orientalis gen. et sp. nov., from the mid-Cambrian of China, which is a colonial organism with calcareous octagonal conical cup-shaped skeletons. It bears cnidarian features including longitudinal septa arranged in octoradial symmetry and colonial occurrence, but lacks a jelly-like mesenchyme. Such morphological characteristics suggest that the colonial occurrence with polyps of octoradial symmetry is the plesiomorphic condition of the Cnidaria and appeared earlier than the jelly-like mesenchyme during the course of evolution
Theropod Fauna from Southern Australia Indicates High Polar Diversity and Climate-Driven Dinosaur Provinciality
The Early Cretaceous fauna of Victoria, Australia, provides unique data on the composition of high latitude southern hemisphere dinosaurs. We describe and review theropod dinosaur postcranial remains from the Aptian–Albian Otway and Strzelecki groups, based on at least 37 isolated bones, and more than 90 teeth from the Flat Rocks locality. Several specimens of medium- and large-bodied individuals (estimated up to ∼8.5 metres long) represent allosauroids. Tyrannosauroids are represented by elements indicating medium body sizes (∼3 metres long), likely including the holotype femur of Timimus hermani, and a single cervical vertebra represents a juvenile spinosaurid. Single specimens representing medium- and small-bodied theropods may be referrable to Ceratosauria, Ornithomimosauria, a basal coelurosaur, and at least three taxa within Maniraptora. Thus, nine theropod taxa may have been present. Alternatively, four distinct dorsal vertebrae indicate a minimum of four taxa. However, because most taxa are known from single bones, it is likely that small-bodied theropod diversity remains underestimated. The high abundance of allosauroids and basal coelurosaurs (including tyrannosauroids and possibly ornithomimosaurs), and the relative rarity of ceratosaurs, is strikingly dissimilar to penecontemporaneous dinosaur faunas of Africa and South America, which represent an arid, lower-latitude biome. Similarities between dinosaur faunas of Victoria and the northern continents concern the proportional representatation of higher clades, and may result from the prevailing temperate–polar climate of Australia, especially at high latitudes in Victoria, which is similar to the predominant warm–temperate climate of Laurasia, but distinct from the arid climate zone that covered extensive areas of Gondwana. Most dinosaur groups probably attained a near-cosmopolitan distribution in the Jurassic, prior to fragmentation of the Pangaean supercontinent, and some aspects of the hallmark ‘Gondwanan’ fauna of South America and Africa may therefore reflect climate-driven provinciality, not vicariant evolution driven by continental fragmentation. However, vicariance may still be detected at lower phylogenetic levels
- …