17,399 research outputs found

    Closed formula for the relative entropy of entanglement in all dimensions

    Full text link
    The relative entropy of entanglement is defined in terms of the relative entropy between an entangled state and its closest separable state (CSS). Given a multipartite-state on the boundary of the set of separable states, we find a closed formula for all the entangled state for which this state is a CSS. Quite amazing, our formula holds for multipartite states in all dimensions. In addition we show that if an entangled state is full rank, then its CSS is unique. For the bipartite case of two qubits our formula reduce to the one given in Phys. Rev. A 78, 032310 (2008).Comment: 8 pages, 1 figure, significantly revised; theorem 1 is now providing necessary and sufficient conditions to determine if a state is CS

    Entanglement-Saving Channels

    Full text link
    The set of Entanglement Saving (ES) quantum channels is introduced and characterized. These are completely positive, trace preserving transformations which when acting locally on a bipartite quantum system initially prepared into a maximally entangled configuration, preserve its entanglement even when applied an arbitrary number of times. In other words, a quantum channel ψ\psi is said to be ES if its powers ψn\psi^n are not entanglement-breaking for all integers nn. We also characterize the properties of the Asymptotic Entanglement Saving (AES) maps. These form a proper subset of the ES channels that is constituted by those maps which, not only preserve entanglement for all finite nn, but which also sustain an explicitly not null level of entanglement in the asymptotic limit~n→∞n\rightarrow \infty. Structure theorems are provided for ES and for AES maps which yield an almost complete characterization of the former and a full characterization of the latter.Comment: 26 page

    Lower Bounds of Concurrence for Tripartite Quantum Systems

    Get PDF
    We derive an analytical lower bound for the concurrence of tripartite quantum mixed states. A functional relation is established relating concurrence and the generalized partial transpositions.Comment: 10 page

    Phase boundaries in deterministic dense coding

    Full text link
    We consider dense coding with partially entangled states on bipartite systems of dimension d×dd\times d, studying the conditions under which a given number of messages, NN, can be deterministically transmitted. It is known that the largest Schmidt coefficient, λ0\lambda_0, must obey the bound λ0≤d/N\lambda_0\le d/N, and considerable empirical evidence points to the conclusion that there exist states satisfying λ0=d/N\lambda_0=d/N for every dd and NN except the special cases N=d+1N=d+1 and N=d2−1N=d^2-1. We provide additional conditions under which this bound cannot be reached -- that is, when it must be that λ0<d/N\lambda_0<d/N -- yielding insight into the shapes of boundaries separating entangled states that allow NN messages from those that allow only N−1N-1. We also show that these conclusions hold no matter what operations are used for the encoding, and in so doing, identify circumstances under which unitary encoding is strictly better than non-unitary.Comment: 7 pages, 1 figur

    Maximization of thermal entanglement of arbitrarily interacting two qubits

    Full text link
    We investigate the thermal entanglement of interacting two qubits. We maximize it by tuning a local Hamiltonian under a given interaction Hamiltonian. We prove that the optimizing local Hamiltonian takes a simple form which dose not depend on the temperature and that the corresponding optimized thermal entanglement decays as 1/(TlogT)1/(T log T) at high temperatures. We also find that at low temperatures the thermal entanglement is maximum without any local Hamiltonians and that the second derivative of the maximized thermal entanglement changes discontinuously at the boundary between the high- and low-temperature phases.Comment: 23 pages, 4 figure

    Majorization criterion for distillability of a bipartite quantum state

    Full text link
    Bipartite quantum states are classified into three categories: separable states, bound entangled states, and free entangled states. It is of great importance to characterize these families of states for the development of quantum information science. In this paper, I show that the separable states and the bound entangled states have a common spectral property. More precisely, I prove that for undistillable -- separable and bound entangled -- states, the eigenvalue vector of the global system is majorized by that of the local system. This result constitutes a new sufficient condition for distillability of bipartite quantum states. This is achieved by proving that if a bipartite quantum state satisfies the reduction criterion for distillability, then it satisfies the majorization criterion for separability.Comment: 4 pages, no figures, REVTEX. A new lemma (Lemma 2) added. To appear in Physical Review Letter

    Wave Profile for Anti-force Waves with Maximum Possible Currents

    Get PDF
    In the theoretical investigation of the electrical breakdown of a gas, we apply a one-dimensional, steady state, constant velocity, three component fluid model and consider the electrons to be the main element in propagation of the wave. The electron gas temperature, and therefore the electron gas partial pressure, is considered to be large enough to provide the driving force. The wave is considered to have a shock front, followed by a thin dynamical transition region. Our set of electron fluid-dynamical equations consists of the equations of conservation of mass, momentum, and energy, plus the Poisson\u27s equation. The set of equations is referred to as the electron fluid dynamical equations; and a successful solution therefor must meet a set of acceptable physical conditions at the trailing edge of the wave. For breakdown waves with a significant current behind the shock front, modifications must be made to the set of electron fluid dynamical equations, as well as the shock condition on electron temperature. Considering existence of current behind the shock front, we have derived the shock condition on electron temperature, and for a set of experimentally measured wave speeds, we have been able to find maximum current values for which solutions to our set of electron velocity, electron temperature, and electron number density within the dynamical transition region of the wave

    Interplay between computable measures of entanglement and other quantum correlations

    Full text link
    Composite quantum systems can be in generic states characterized not only by entanglement, but also by more general quantum correlations. The interplay between these two signatures of nonclassicality is still not completely understood. In this work we investigate this issue focusing on computable and observable measures of such correlations: entanglement is quantified by the negativity N, while general quantum correlations are measured by the (normalized) geometric quantum discord D_G. For two-qubit systems, we find that the geometric discord reduces to the squared negativity on pure states, while the relationship DG≥N2D_G \geq N^2 holds for arbitrary mixed states. The latter result is rigorously extended to pure, Werner and isotropic states of two-qudit systems for arbitrary d, and numerical evidence of its validity for arbitrary states of a qubit and a qutrit is provided as well. Our results establish an interesting hierarchy, that we conjecture to be universal, between two relevant and experimentally friendly nonclassicality indicators. This ties in with the intuition that general quantum correlations should at least contain and in general exceed entanglement on mixed states of composite quantum systems.Comment: 10 pages, 4 figure

    Witnessing quantum discord in 2 x N systems

    Get PDF
    Bipartite states with vanishing quantum discord are necessarily separable and hence positive partial transpose (PPT). We show that 2 x N states satisfy additional property: the positivity of their partial transposition is recognized with respect to the canonical factorization of the original density operator. We call such states SPPT (for strong PPT). Therefore, we provide a natural witness for a quantum discord: if a 2 x N state is not SPPT it must contain nonclassical correlations measured by quantum discord. It is an analog of the celebrated Peres-Horodecki criterion: if a state is not PPT it must be entangled.Comment: 5 page
    • …
    corecore