69,152 research outputs found
Robot docking using mixtures of Gaussians
This paper applies the Mixture of Gaussians probabilistic model, combined with Expectation Maximization optimization to the task of summarizing three dimensionals range data for the mobile robot. This provides a flexible way of dealing with uncertainties in sensor information, and allows the introduction of prior knowledge into low-level perception modules. Problems with the basic approach were solved in several ways: the mixture of Gaussians was reparameterized to reflect the types of objects expected in the scene, and priors on model parameters were included in the optimization process. Both approaches force the optimization to find 'interesting' objects, given the sensor and object characteristics. A higher level classifier was used to interpret the results provided by the model, and to reject spurious solutions
Mode expansion for the density profile of crystal-fluid interfaces: Hard spheres as a test case
We present a technique for analyzing the full three-dimensional density
profiles of a planar crystal-fluid interface in terms of density modes. These
density modes can also be related to crystallinity order parameter profiles
which are used in coarse-grained, phase field type models of the statics and
dynamics of crystal-fluid interfaces and are an alternative to crystallinity
order parameters extracted from simulations using local crystallinity criteria.
We illustrate our results for the hard sphere system using finely-resolved,
three-dimensional density profiles from density functional theory of
fundamental measure type.Comment: submitted for the special issue of the CODEF III conferenc
Observational and theoretical studies of the evolving structure of baroclinic waves
Dynamical processes involved in comma cloud formation, and passive tracer evolution in a baroclinic wave are discussed. An analytical solution was obtained demonstrating the complex nongeostrophic flow pattern involved in the redistribution of low level constituents in a finite amplitude baroclinic wave, and in the formation of the typical humidity and cloud distributions in such a wave. Observational and theoretical studies of blocking weather patterns in middle latitude flows were studied. The differences in the energy and enstrophy cascades in blocking and nonblocking situations were shown. It was established that pronounced upscale flow of both of these quantities, from intermediate to planetary scales, occurs during blocking episodes. The upscale flux of enstrophy, in particular, suggests that the persistence of blocking periods may be due to reduced dissipation of the large scale circulation and therefore entail some above normal predictability
Why does the Jeans Swindle work?
When measuring the mass profile of any given cosmological structure through
internal kinematics, the distant background density is always ignored. This
trick is often refereed to as the "Jeans Swindle". Without this trick a
divergent term from the background density renders the mass profile undefined,
however, this trick has no formal justification. We show that when one includes
the expansion of the Universe in the Jeans equation, a term appears which
exactly cancels the divergent term from the background. We thereby establish a
formal justification for using the Jeans Swindle.Comment: 5 pages, 2 figures, Accepted for publication in MNRAS Letter
The need for a second black hole at the Galactic center
Deep infra-red observations and long-term monitoring programs have provided
dynamical evidence for a supermassive black hole of mass 3.e6 solar masses
associated with the radio source Sagitarrius A* at the center of our Galaxy.
The brightest stars orbiting within 0.1 parsecs of the black hole appear to be
young, massive main sequence stars, n spite of an environment near the black
hole that is hostile to star formation. We discuss mechanisms by which stars
born outside the central parsec can sink towards the black hole and conclude
that the drag coming from plausible stellar populations does not operate on the
short timescales required by the stellar ages. We propose that these stars were
dragged in by a second black hole of mass of 1.e3-1.e4 solar masses, which
would be classified as an intermediate-mass black hole. We discuss the
implications for the stellar populations and the kinematics in the Galactic
center. Finally we note that continued astrometric monitoring of the central
radio source offers the prospect for a direct detection of such objects.Comment: 5 pages, 2 postscript figures, submitted to ApJ letters The
introduction section has been updated since submission to Ap
A full quantal theory of one-neutron halo breakup reactions
We present a theory of one-neutron halo breakup reactions within the
framework of post-form distorted wave Born approximation wherein pure Coulomb,
pure nuclear and their interference terms are treated consistently in a single
setup. This formalism is used to study the breakup of one-neutron halo nucleus
11Be on several targets of different masses. We investigate the role played by
the pure Coulomb, pure nuclear and the Coulomb-nuclear interference terms by
calculating several reaction observables. The Coulomb-nuclear interference
terms are found to be important for more exclusive observables.Comment: 22 pages latex, 9 figures, submitted to Phy. Rev.
Density functional theory for hard-sphere mixtures: the White-Bear version Mark II
In the spirit of the White-Bear version of fundamental measure theory we
derive a new density functional for hard-sphere mixtures which is based on a
recent mixture extension of the Carnahan-Starling equation of state. In
addition to the capability to predict inhomogeneous density distributions very
accurately, like the original White-Bear version, the new functional improves
upon consistency with an exact scaled-particle theory relation in the case of
the pure fluid. We examine consistency in detail within the context of
morphological thermodynamics. Interestingly, for the pure fluid the degree of
consistency of the new version is not only higher than for the original
White-Bear version but also higher than for Rosenfeld's original fundamental
measure theory.Comment: 16 pages, 3 figures; minor changes; J. Phys.: Condens. Matter,
accepte
- …