69,152 research outputs found

    Robot docking using mixtures of Gaussians

    Get PDF
    This paper applies the Mixture of Gaussians probabilistic model, combined with Expectation Maximization optimization to the task of summarizing three dimensionals range data for the mobile robot. This provides a flexible way of dealing with uncertainties in sensor information, and allows the introduction of prior knowledge into low-level perception modules. Problems with the basic approach were solved in several ways: the mixture of Gaussians was reparameterized to reflect the types of objects expected in the scene, and priors on model parameters were included in the optimization process. Both approaches force the optimization to find 'interesting' objects, given the sensor and object characteristics. A higher level classifier was used to interpret the results provided by the model, and to reject spurious solutions

    Mode expansion for the density profile of crystal-fluid interfaces: Hard spheres as a test case

    Full text link
    We present a technique for analyzing the full three-dimensional density profiles of a planar crystal-fluid interface in terms of density modes. These density modes can also be related to crystallinity order parameter profiles which are used in coarse-grained, phase field type models of the statics and dynamics of crystal-fluid interfaces and are an alternative to crystallinity order parameters extracted from simulations using local crystallinity criteria. We illustrate our results for the hard sphere system using finely-resolved, three-dimensional density profiles from density functional theory of fundamental measure type.Comment: submitted for the special issue of the CODEF III conferenc

    Observational and theoretical studies of the evolving structure of baroclinic waves

    Get PDF
    Dynamical processes involved in comma cloud formation, and passive tracer evolution in a baroclinic wave are discussed. An analytical solution was obtained demonstrating the complex nongeostrophic flow pattern involved in the redistribution of low level constituents in a finite amplitude baroclinic wave, and in the formation of the typical humidity and cloud distributions in such a wave. Observational and theoretical studies of blocking weather patterns in middle latitude flows were studied. The differences in the energy and enstrophy cascades in blocking and nonblocking situations were shown. It was established that pronounced upscale flow of both of these quantities, from intermediate to planetary scales, occurs during blocking episodes. The upscale flux of enstrophy, in particular, suggests that the persistence of blocking periods may be due to reduced dissipation of the large scale circulation and therefore entail some above normal predictability

    Why does the Jeans Swindle work?

    Full text link
    When measuring the mass profile of any given cosmological structure through internal kinematics, the distant background density is always ignored. This trick is often refereed to as the "Jeans Swindle". Without this trick a divergent term from the background density renders the mass profile undefined, however, this trick has no formal justification. We show that when one includes the expansion of the Universe in the Jeans equation, a term appears which exactly cancels the divergent term from the background. We thereby establish a formal justification for using the Jeans Swindle.Comment: 5 pages, 2 figures, Accepted for publication in MNRAS Letter

    The need for a second black hole at the Galactic center

    Full text link
    Deep infra-red observations and long-term monitoring programs have provided dynamical evidence for a supermassive black hole of mass 3.e6 solar masses associated with the radio source Sagitarrius A* at the center of our Galaxy. The brightest stars orbiting within 0.1 parsecs of the black hole appear to be young, massive main sequence stars, n spite of an environment near the black hole that is hostile to star formation. We discuss mechanisms by which stars born outside the central parsec can sink towards the black hole and conclude that the drag coming from plausible stellar populations does not operate on the short timescales required by the stellar ages. We propose that these stars were dragged in by a second black hole of mass of 1.e3-1.e4 solar masses, which would be classified as an intermediate-mass black hole. We discuss the implications for the stellar populations and the kinematics in the Galactic center. Finally we note that continued astrometric monitoring of the central radio source offers the prospect for a direct detection of such objects.Comment: 5 pages, 2 postscript figures, submitted to ApJ letters The introduction section has been updated since submission to Ap

    A full quantal theory of one-neutron halo breakup reactions

    Full text link
    We present a theory of one-neutron halo breakup reactions within the framework of post-form distorted wave Born approximation wherein pure Coulomb, pure nuclear and their interference terms are treated consistently in a single setup. This formalism is used to study the breakup of one-neutron halo nucleus 11Be on several targets of different masses. We investigate the role played by the pure Coulomb, pure nuclear and the Coulomb-nuclear interference terms by calculating several reaction observables. The Coulomb-nuclear interference terms are found to be important for more exclusive observables.Comment: 22 pages latex, 9 figures, submitted to Phy. Rev.

    Density functional theory for hard-sphere mixtures: the White-Bear version Mark II

    Full text link
    In the spirit of the White-Bear version of fundamental measure theory we derive a new density functional for hard-sphere mixtures which is based on a recent mixture extension of the Carnahan-Starling equation of state. In addition to the capability to predict inhomogeneous density distributions very accurately, like the original White-Bear version, the new functional improves upon consistency with an exact scaled-particle theory relation in the case of the pure fluid. We examine consistency in detail within the context of morphological thermodynamics. Interestingly, for the pure fluid the degree of consistency of the new version is not only higher than for the original White-Bear version but also higher than for Rosenfeld's original fundamental measure theory.Comment: 16 pages, 3 figures; minor changes; J. Phys.: Condens. Matter, accepte
    corecore