3,215 research outputs found

    Mapping for the Masses: Accessing Web 2.0 through Crowdsourcing

    Get PDF
    The authors describe how we are harnessing the power of web 2.0 technologies to create new approaches to collecting, mapping, and sharing geocoded data. The authors begin with GMapCreator that lets users fashion new maps using Google Maps as a base. The authors then describe MapTube that enables users to archive maps and demonstrate how it can be used in a variety of contexts to share map information, to put existing maps into a form that can be shared, and to create new maps from the bottom-up using a combination of crowdcasting, crowdsourcing, and traditional broadcasting. The authors conclude by arguing that such tools are helping to define a neogeography that is essentially "mapping for the masses,'' while noting that there are many issues of quality, accuracy, copyright, and trust that will influence the impact of these tools on map-based communication

    Near-optimal protocols in complex nonequilibrium transformations

    Get PDF
    The development of sophisticated experimental means to control nanoscale systems has motivated efforts to design driving protocols which minimize the energy dissipated to the environment. Computational models are a crucial tool in this practical challenge. We describe a general method for sampling an ensemble of finite-time, nonequilibrium protocols biased towards a low average dissipation. We show that this scheme can be carried out very efficiently in several limiting cases. As an application, we sample the ensemble of low-dissipation protocols that invert the magnetization of a 2D Ising model and explore how the diversity of the protocols varies in response to constraints on the average dissipation. In this example, we find that there is a large set of protocols with average dissipation close to the optimal value, which we argue is a general phenomenon.Comment: 6 pages and 3 figures plus 4 pages and 5 figures of supplemental materia

    Measuring thermodynamic length

    Get PDF
    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information and Rao's entropy differential metric. Therefore, thermodynamic length is of central interest in understanding matter out-of-equilibrium. In this paper, we will consider how to define thermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.Comment: 4 pages; Typos correcte

    On the Quantum Jarzynski Identity

    Get PDF
    In this note, we will discuss how to compactly express and prove the Jarzynski identity for an open quantum system with dissipative dynamics. We will avoid explicitly measuring the work directly, which is tantamount to continuously monitoring the system, and instead measure the heat flow from the environment. We represent the measurement of heat flow with Hermitian map superoperators that act on the system density matrix. Hermitian maps provide a convenient and compact representation of sequential measurement and correlation functions.Comment: 4 page

    Non-equilibrium Relations for Spin Glasses with Gauge Symmetry

    Full text link
    We study the applications of non-equilibrium relations such as the Jarzynski equality and fluctuation theorem to spin glasses with gauge symmetry. It is shown that the exponentiated free-energy difference appearing in the Jarzynski equality reduces to a simple analytic function written explicitly in terms of the initial and final temperatures if the temperature satisfies a certain condition related to gauge symmetry. This result is used to derive a lower bound on the work done during the non-equilibrium process of temperature change. We also prove identities relating equilibrium and non-equilibrium quantities. These identities suggest a method to evaluate equilibrium quantities from non-equilibrium computations, which may be useful to avoid the problem of slow relaxation in spin glasses.Comment: 8 pages, 2 figures, submitted to JPS

    Quantum Operation Time Reversal

    Full text link
    The dynamics of an open quantum system can be described by a quantum operation, a linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes towards equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.Comment: 4 page

    Transient fluctuation theorem in closed quantum systems

    Full text link
    Our point of departure are the unitary dynamics of closed quantum systems as generated from the Schr\"odinger equation. We focus on a class of quantum models that typically exhibit roughly exponential relaxation of some observable within this framework. Furthermore, we focus on pure state evolutions. An entropy in accord with Jaynes principle is defined on the basis of the quantum expectation value of the above observable. It is demonstrated that the resulting deterministic entropy dynamics are in a sense in accord with a transient fluctuation theorem. Moreover, we demonstrate that the dynamics of the expectation value are describable in terms of an Ornstein-Uhlenbeck process. These findings are demonstrated numerically and supported by analytical considerations based on quantum typicality.Comment: 5 pages, 6 figure

    Advanced pixel architectures for scientific image sensors

    Get PDF
    We present recent developments from two projects targeting advanced pixel architectures for scientific applications. Results are reported from FORTIS, a sensor demonstrating variants on a 4T pixel architecture. The variants include differences in pixel and diode size, the in-pixel source follower transistor size and the capacitance of the readout node to optimise for low noise and sensitivity to small amounts of charge. Results are also reported from TPAC, a complex pixel architecture with ~160 transistors per pixel. Both sensors were manufactured in the 0.18ÎĽm INMAPS process, which includes a special deep p-well layer and fabrication on a high resistivity epitaxial layer for improved charge collection efficiency

    The geometry of thermodynamic control

    Full text link
    A deeper understanding of nonequilibrium phenomena is needed to reveal the principles governing natural and synthetic molecular machines. Recent work has shown that when a thermodynamic system is driven from equilibrium then, in the linear response regime, the space of controllable parameters has a Riemannian geometry induced by a generalized friction tensor. We exploit this geometric insight to construct closed-form expressions for minimal-dissipation protocols for a particle diffusing in a one dimensional harmonic potential, where the spring constant, inverse temperature, and trap location are adjusted simultaneously. These optimal protocols are geodesics on the Riemannian manifold, and reveal that this simple model has a surprisingly rich geometry. We test these optimal protocols via a numerical implementation of the Fokker-Planck equation and demonstrate that the friction tensor arises naturally from a first order expansion in temporal derivatives of the control parameters, without appealing directly to linear response theory
    • …
    corecore