154 research outputs found

    Isotope shifts in francium isotopes Fr206-213 and Fr-221

    Get PDF
    We present the isotope shifts of the 7s(1/2) to 7p(1/2) transition for francium isotopes Fr206-213 with reference to Fr-221 collected from two experimental periods. The shifts are measured on a sample of atoms prepared within a magneto-optical trap by a fast sweep of radio-frequency sidebands applied to a carrier laser. King plot analysis, which includes literature values for 7s(1/2) to 7p(3/2) isotope shifts, provides a field shift constant ratio of 1.0520(10) and a difference between the specific mass shift constants of 170(100) GHz amu between the D-1 and D-2 transitions, of sufficient precision to differentiate between ab initio calculations

    Altmetrics and Library Publishing

    Get PDF
    Altmetrics are a valuable offering that can enhance the services provided by a library publishing program and attract potential publishing partners. This presentation describes the use of altmetrics in the 38 journals published by the University Library System, University of Pittsburgh, as part of its library publishing program. By using a widget from Plum Analytics, altmetrics from each journal article are displayed on abstract pages; furthermore, journal editors have access to a robust dashboard of metrics that allows editors, authors, and readers to access full information about the journal’s impact. Librarians who are part of a library publishing operation have a valuable role to play in training and supporting journal staff and users in the meaning and potential applications of altmetrics, which transforms altmetrics from a component of a publishing program to a service

    Atomic parity non-conservation in francium: The FrPNC experiment at TRIUMF

    Get PDF
    The FrPNC Collaboration is constructing an on-line laser cooling and trapping apparatus at TRIUMF to measure atomic parity non-conservation (PNC) and nuclear anapole moments in a series of artificially produced francium isotopes. Francium’s simple electronic structure and enhanced parity violation make it a strong candidate for precision measurements of atomic PNC: the optical PNC and anapole-induced PNC effects are expected to be an order of magnitude larger in francium than in cesium. Atomic PNC experiments provide unique high precision tests of the Standard Model’s predictions for neutral current weak interactions at very low energies. Furthermore, precision measurements of nuclear anapole moments probe inter-nucleon weak interactions within the nucleus

    Flowing with Time: a New Approach to Nonlinear Cosmological Perturbations

    Full text link
    Nonlinear effects are crucial in order to compute the cosmological matter power spectrum to the accuracy required by future generation surveys. Here, a new approach is presented, in which the power spectrum, the bispectrum and higher order correlations, are obtained -- at any redshift and for any momentum scale -- by integrating a system of differential equations. The method is similar to the familiar BBGKY hierarchy. Truncating at the level of the trispectrum, the solution of the equations corresponds to the summation of an infinite class of perturbative corrections. Compared to other resummation frameworks, the scheme discussed here is particularly suited to cosmologies other than LambdaCDM, such as those based on modifications of gravity and those containing massive neutrinos. As a first application, we compute the Baryonic Acoustic Oscillation feature of the power spectrum, and compare the results with perturbation theory, the halo model, and N-body simulations. The density-velocity and velocity-velocity power spectra are also computed, showing that they are much less contaminated by nonlinearities than the density-density one. The approach can be seen as a particular formulation of the renormalization group, in which time is the flow parameter.Comment: 20 pages, 7 figures. Matches version published on JCA

    'Searching for a needle in a haystack;' A Ba-tagging approach for an upgraded nEXO experiment

    Full text link
    nEXO is a proposed experiment that will search for neutrinoless double-beta decay (0νββ\nu\beta\beta) in 5-tonnes of liquid xenon (LXe), isotopically enriched in 136^{136}Xe. A technique called Ba-tagging is being developed as a potential future upgrade for nEXO to detect the 136^{136}Xe double-beta decay daughter isotope, 136^{136}Ba. An efficient Ba-tagging technique has the potential to boost nEXO's 0νββ\nu\beta\beta sensitivity by essentially suppressing non-double-beta decay background events. A conceptual approach for the extraction from the detector volume, trapping, and identification of a single Ba ion from 5 tonnes of LXe is presented, along with initial results from the commissioning of one of its subsystems, a quadrupole mass filter.Comment: 4 pages, 2 figure

    Apportioning sources of organic matter in streambed sediments: An integrated molecular and compound-specific stable isotope approach

    Get PDF
    We present a novel application for quantitatively apportioning sources of organic matter in streambed sediments via a coupled molecular and compound-specific isotope analysis (CSIA) of long-chain leaf wax n-alkane biomarkers using a Bayesian mixing model. Leaf wax extracts of 13 plant species were collected from across two environments (aquatic and terrestrial) and four plant functional types (trees, herbaceous perennials, and C3 and C4 graminoids) from the agricultural River Wensum catchment, UK. Seven isotopic (δ13C27, δ13C29, δ13C31, δ13C27–31, δ2H27, δ2H29, and δ2H27–29) and two n-alkane ratio (average chain length (ACL), carbon preference index (CPI)) fingerprints were derived, which successfully differentiated 93% of individual plant specimens by plant functional type. The δ2H values were the strongest discriminators of plants originating from different functional groups, with trees (δ2H27–29 = − 208‰ to − 164‰) and C3 graminoids (δ2H27–29 = − 259‰ to − 221‰) providing the largest contrasts. The δ13C values provided strong discrimination between C3 (δ13C27–31 = − 37.5‰ to − 33.8‰) and C4 (δ13C27–31 = − 23.5‰ to − 23.1‰) plants, but neither δ13C nor δ2H values could uniquely differentiate aquatic and terrestrial species, emphasizing a stronger plant physiological/biochemical rather than environmental control over isotopic differences. ACL and CPI complemented isotopic discrimination, with significantly longer chain lengths recorded for trees and terrestrial plants compared with herbaceous perennials and aquatic species, respectively. Application of a comprehensive Bayesian mixing model for 18 streambed sediments collected between September 2013 and March 2014 revealed considerable temporal variability in the apportionment of organic matter sources. Median organic matter contributions ranged from 22% to 52% for trees, 29% to 50% for herbaceous perennials, 17% to 34% for C3 graminoids and 3% to 7% for C4 graminoids. The results presented here clearly demonstrate the effectiveness of an integrated molecular and stable isotope analysis for quantitatively apportioning, with uncertainty, plant-specific organic matter contributions to streambed sediments via a Bayesian mixing model approach
    • …
    corecore