8,430 research outputs found
Excitations in confined helium
We design models for helium in matrices like aerogel, Vycor or Geltech from a
manifestly microscopic point of view. For that purpose, we calculate the
dynamic structure function of 4He on Si substrates and between two Si walls as
a function of energy, momentum transfer, and the scattering angle. The
angle--averaged results are in good agreement with the neutron scattering data;
the remaining differences can be attributed to the simplified model used here
for the complex pore structure of the materials. A focus of the present work is
the detailed identification of coexisting layer modes and bulk--like
excitations, and, in the case of thick films, ripplon excitations. Involving
essentially two--dimensional motion of atoms, the layer modes are sensitive to
the scattering angle.Comment: Phys. Rev. B (2003, in press
Nuclear gas dynamics in Arp 220 - sub-kiloparsec scale atomic hydrogen disks
We present new, high angular resolution (~0.22") MERLIN observations of
neutral hydrogen (HI) absorption and 21-cm radio continuum emission across the
central ~900 parsecs of the ultraluminous infrared galaxy, Arp220. Spatially
resolved HI absorption is detected against the morphologically complex and
extended 21-cm radio continuum emission, consistent with two counterrotating
disks of neutral hydrogen, with a small bridge of gas connecting the two.
We propose a merger model in which the two nuclei represent the galaxy cores
which have survived the initial encounter and are now in the final stages of
merging, similar to conclusions drawn from previous CO studies (Sakamoto,
Scoville & Yun 1999). However, we suggest that instead of being coplanar with
the main CO disk (in which the eastern nucleus is embedded), the western
nucleus lies above it and, as suggested by bridge of HI connecting the two
nuclei, will soon complete its final merger with the main disk. We suggest that
the collection of radio supernovae (RSN) detected in VLBA studies in the more
compact western nucleus represent the second burst of star formation associated
with this final merger stage and that free-free absorption due to ionised gas
in the bulge-like component can account for the observed RSN distribution.
(Abridged)Comment: 26 pages including 8 figures and 1 table; accepted for publication in
Ap
Discovery of distant high luminosity infrared galaxies
We have developed a method for selecting the most luminous galaxies detected
by IRAS based on their extreme values of R, the ratio of 60 micron and B-band
luminosity. These objects have optical counterparts that are close to or below
the limits of Schmidt surveys. We have tested our method on a 1079 deg^2 region
of sky, where we have selected a sample of IRAS sources with 60 micron flux
densities greater than 0.2 Jy, corresponding to a redshift limit z~1 for
objects with far-IR luminosities of 10^{13} L_sun. Optical identifications for
these were obtained from the UK Schmidt Telescope plates, using the likelihood
ratio method. Optical spectroscopy has been carried out to reliably identify
and measure the redshifts of six objects with very faint optical counterparts,
which are the only objects with R>100 in the sample. One object is a
hyperluminous infrared galaxy (HyLIG) at z=0.834. Of the remaining, fainter
objects, five are ultraluminous infrared galaxies (ULIGs) with a mean redshift
of 0.45, higher than the highest known redshift of any non-hyperluminous ULIG
prior to this study. High excitation lines reveal the presence of an active
nucleus in the HyLIG, just as in the other known infrared-selected HyLIGs. In
contrast, no high excitation lines are found in the non-hyperluminous ULIGs. We
discuss the implications of our results for the number density of HyLIGs at z<1
and for the evolution of the infrared galaxy population out to this redshift,
and show that substantial evolution is indicated. Our selection method is
robust against the presence of gravitational lensing if the optical and
infrared magnification factors are similar, and we suggest a way of using it to
select candidate gravitationally lensed infrared galaxies.Comment: 6 pages, accepted for publication in A&
Diffusion Monte Carlo study of two-dimensional liquid He
The ground-state properties of two-dimensional liquid He at zero
temperature are studied by means of a quadratic diffusion Monte Carlo method.
As interatomic potential we use a revised version of the HFDHE2 Aziz potential
which is expected to give a better description of the interaction between
helium atoms. The equation of state is determined with great accuracy over a
wide range of densities in the liquid phase from the spinodal point up to the
freezing density. The spinodal decomposition density is estimated and other
properties of the liquid, such as radial distribution function, static form
factor, momentum distribution and density dependence of the condensate fraction
are all presented.Comment: 19 pages, RevTex 3.0, 7 figures available upon reques
The SCUBA Local Universe Galaxy Survey I: First Measurements of the Submillimetre Luminosity and Dust Mass Functions
We have used SCUBA to observe a complete sample of 104 galaxies selected at
60 microns from the IRAS BGS and we present here the 850 micron measurements.
Fitting the 60,100 and 850 micron fluxes with a single temperature dust model
gives the sample mean temperature T=36 K and beta = 1.3. We do not rule out the
possibility of dust which is colder than this, if a 20 K component was present
then our dust masses would increase by factor 1.5-3. We present the first
measurements of the luminosity and dust mass functions, which were well fitted
by Schechter functions (unlike those 60 microns). We have correlated many
global galaxy properties with the submillimetre and find that there is a
tendancy for less optically luminous galaxies to contain warmer dust and have
greater star formation efficiencies (cf. Young 1999). The average gas-to-dust
ratio for the sample is 581 +/- 43 (using both atomic and molecular hydrogen),
significantly higher than the Galactic value of 160. We believe this
discrepancy is due to a cold dust component at T < 20 K. There is a suprisingly
tight correlation between dust mass and the mass of molecular hydrogen as
estimated from CO measurements, with an intrinsic scatter of ~50%.Comment: 24 pages, 15 figures, 8 tables, accepted for publication in MNRA
Gaussian Optical Ising Machines
It has recently been shown that optical parametric oscillator (OPO) Ising
machines, consisting of coupled optical pulses circulating in a cavity with
parametric gain, can be used to probabilistically find low-energy states of
Ising spin systems. In this work, we study optical Ising machines that operate
under simplified Gaussian dynamics. We show that these dynamics are sufficient
for reaching probabilities of success comparable to previous work. Based on
this result, we propose modified optical Ising machines with simpler designs
that do not use parametric gain yet achieve similar performance, thus
suggesting a route to building much larger systems.Comment: 6 page
The Double Quasar Q2138-431: Lensing by a Dark Galaxy?
We report the discovery of a new gravitational lens candidate Q2138-431AB,
comprising two quasar images at a redshift of 1.641 separated by 4.5 arcsecs.
The spectra of the two images are very similar, and the redshifts agree to
better than 115 km.sec. The two images have magnitudes and
, and in spite of a deep search and image subtraction procedure, no
lensing galaxy has been found with . Modelling of the system
configuration implies that the mass-to-light ratio of any lensing galaxy is
likely to be around , with an absolute lower limit of
for an Einstein-de Sitter universe. We conclude that
the most likely explanation of the observations is gravitational lensing by a
dark galaxy, although it is possible we are seeing a binary quasar.Comment: 17 pages (Latex), 8 postscript figures included, accepted by MNRA
- …