52,081 research outputs found
Algebraic solution of a graphene layer in a transverse electric and perpendicular magnetic fields
We present an exact algebraic solution of a single graphene plane in
transverse electric and perpendicular magnetic fields. The method presented
gives both the eigen-values and the eigen-functions of the graphene plane. It
is shown that the eigen-states of the problem can be casted in terms of
coherent states, which appears in a natural way from the formalism.Comment: 11 pages, 5 figures, accepted for publication in Journal of Physics
Condensed Matte
A Laplace transform approach to the quantum harmonic oscillator
The one-dimensional quantum harmonic oscillator problem is examined via the
Laplace transform method. The stationary states are determined by requiring
definite parity and good behaviour of the eigenfunction at the origin and at
infinity
Bilayer graphene: gap tunability and edge properties
Bilayer graphene -- two coupled single graphene layers stacked as in graphite
-- provides the only known semiconductor with a gap that can be tuned
externally through electric field effect. Here we use a tight binding approach
to study how the gap changes with the applied electric field. Within a parallel
plate capacitor model and taking into account screening of the external field,
we describe real back gated and/or chemically doped bilayer devices. We show
that a gap between zero and midinfrared energies can be induced and externally
tuned in these devices, making bilayer graphene very appealing from the point
of view of applications. However, applications to nanotechnology require
careful treatment of the effect of sample boundaries. This being particularly
true in graphene, where the presence of edge states at zero energy -- the Fermi
level of the undoped system -- has been extensively reported. Here we show that
also bilayer graphene supports surface states localized at zigzag edges. The
presence of two layers, however, allows for a new type of edge state which
shows an enhanced penetration into the bulk and gives rise to band crossing
phenomenon inside the gap of the biased bilayer system.Comment: 8 pages, 3 fugures, Proceedings of the International Conference on
Theoretical Physics: Dubna-Nano200
Conductivity of suspended and non-suspended graphene at finite gate voltage
We compute the DC and the optical conductivity of graphene for finite values
of the chemical potential by taking into account the effect of disorder, due to
mid-gap states (unitary scatterers) and charged impurities, and the effect of
both optical and acoustic phonons. The disorder due to mid-gap states is
treated in the coherent potential approximation (CPA, a self-consistent
approach based on the Dyson equation), whereas that due to charged impurities
is also treated via the Dyson equation, with the self-energy computed using
second order perturbation theory. The effect of the phonons is also included
via the Dyson equation, with the self energy computed using first order
perturbation theory. The self-energy due to phonons is computed both using the
bare electronic Green's function and the full electronic Green's function,
although we show that the effect of disorder on the phonon-propagator is
negligible. Our results are in qualitative agreement with recent experiments.
Quantitative agreement could be obtained if one assumes water molelcules under
the graphene substrate. We also comment on the electron-hole asymmetry observed
in the DC conductivity of suspended graphene.Comment: 13 pages, 11 figure
The Nature and Validity of the RKKY limit of exchange coupling in magnetic trilayers
The effects on the exchange coupling in magnetic trilayers due to the
presence of a spin-independent potential well are investigated. It is shown
that within the RKKY theory no bias nor extra periods of oscillation associated
with the depth of the well are found, contrary to what has been claimed in
recent works. The range of validity of the RKKY theory is also discussed.Comment: 10, RevTe
Pyramidal Fisher Motion for Multiview Gait Recognition
The goal of this paper is to identify individuals by analyzing their gait.
Instead of using binary silhouettes as input data (as done in many previous
works) we propose and evaluate the use of motion descriptors based on densely
sampled short-term trajectories. We take advantage of state-of-the-art people
detectors to define custom spatial configurations of the descriptors around the
target person. Thus, obtaining a pyramidal representation of the gait motion.
The local motion features (described by the Divergence-Curl-Shear descriptor)
extracted on the different spatial areas of the person are combined into a
single high-level gait descriptor by using the Fisher Vector encoding. The
proposed approach, coined Pyramidal Fisher Motion, is experimentally validated
on the recent `AVA Multiview Gait' dataset. The results show that this new
approach achieves promising results in the problem of gait recognition.Comment: Submitted to International Conference on Pattern Recognition, ICPR,
201
Solid flow drives surface nanopatterning by ion-beam irradiation
Ion Beam Sputtering (IBS) is known to produce surface nanopatterns over
macroscopic areas on a wide range of materials. However, in spite of the
technological potential of this route to nanostructuring, the physical process
by which these surfaces self-organize remains poorly under- stood. We have
performed detailed experiments of IBS on Si substrates that validate dynamical
and morphological predictions from a hydrodynamic description of the
phenomenon. Our results elucidate flow of a nanoscopically thin and highly
viscous surface layer, driven by the stress created by the ion-beam, as a
description of the system. This type of slow relaxation is akin to flow of
macroscopic solids like glaciers or lead pipes, that is driven by defect
dynamics.Comment: 12 pages, 4 figure
Entanglement of two-qubit photon beam by magnetic field
We have studied the possibility of affecting the entanglement measure of
2-qubit system consisting of two photons with different fixed frequencies but
with two arbitrary linear polarizations, moving in the same direction, by the
help of an applied external magnetic field. The interaction between the
magnetic field and the photons in our model is achieved through intermediate
electrons that interact with both the photons and the magnetic field. The
possibility of exact theoretical analysis of this scheme is based on known
exact solutions that describe the interaction of an electron subjected to an
external magnetic field (or a medium of electrons not interacting with each
other) with a quantized field of two photons. We adapt these exact solutions to
the case under consideration. Using explicit wave functions for the resulting
electromagnetic field, we calculate the entanglement measure of the photon beam
as a function of the applied magnetic field and parameters of the electron
medium
Inducing energy gaps in graphene monolayer and bilayer
In this paper we propose a mechanism for the induction of energy gaps in the
spectrum of graphene and its bilayer, when both these materials are covered
with water and ammonia molecules. The energy gaps obtained are within the range
20-30 meV, values compatible to those found in experimental studies of graphene
bilayer. We further show that the binding energies are large enough for the
adsorption of the molecules to be maintained even at room temperature
- …