594 research outputs found
Evidence for "Propeller" Effects In X-ray Pulsars GX 1+4 And GROJ1744-28
We present observational evidence for "propeller" effects in two X-ray
pulsars, GX 1+4 and GROJ1744-28. Both sources were monitored regularly by the
Rossi X-ray Timing Explorer (RXTE) throughout a decaying period in the X-ray
brightness. Quite remarkably, strong X-ray pulsation became unmeasurable when
total X-ray flux had dropped below a certain threshold. Such a phenomenon is a
clear indication of the propeller effects which take place when pulsar
magnetosphere grows beyond the co-rotation radius as a result of the decrease
in mass accretion rate and centrifugal force prevents accreting matter from
reaching the magnetic poles. The entire process should simply reverse as the
accretion rate increases. Indeed, steady X-ray pulsation was reestablished as
the sources emerged from the non-pulsating faint state. These data allow us to
directly derive the surface polar magnetic field strength for both pulsars:
3.1E+13 G for GX 1+4 and 2.4E+11 G for GROJ1744-28. The results are likely to
be accurate to within a factor of 2, with the total uncertainty dominated by
the uncertainty in estimating the distances to the sources. Possible mechanisms
for the persistent emission observed in the faint state are discussed in light
of the extreme magnetic properties of the sources.Comment: 12 pages including 3 ps figures. To appear in ApJ Letters Vol. 48
Arrival processes in port modeling: insights from a case study
This paper investigates the impact of arrival processes on the ship handling process. Two types of arrival processes are considered: controlled and uncontrolled. Simulation results show that uncontrolled arrivals of ships perform worst in terms of both ship delays and required storage capacity. Stock-controlled arrivals perform best with regard to large vessel delays and storage capacity. The combination of stock-controlled arrivals for large vessels and equidistant arrivals for barges also performs better than the uncontrolled process. Careful allocation of ships to the mooring points of a jetty further improves the efficiency.supply chain management;logistics;simulation;transportation;case study
The Double Pulsar Eclipses I: Phenomenology and Multi-frequency Analysis
The double pulsar PSR J0737-3039A/B displays short, 30 s eclipses that arise
around conjunction when the radio waves emitted by pulsar A are absorbed as
they propagate through the magnetosphere of its companion pulsar B. These
eclipses offer a unique opportunity to probe directly the magnetospheric
structure and the plasma properties of pulsar B. We have performed a
comprehensive analysis of the eclipse phenomenology using multi-frequency radio
observations obtained with the Green Bank Telescope. We have characterized the
periodic flux modulations previously discovered at 820 MHz by McLaughlin et
al., and investigated the radio frequency dependence of the duration and depth
of the eclipses. Based on their weak radio frequency evolution, we conclude
that the plasma in pulsar B's magnetosphere requires a large multiplicity
factor (~ 10^5). We also found that, as expected, flux modulations are present
at all radio frequencies in which eclipses can be detected. Their complex
behavior is consistent with the confinement of the absorbing plasma in the
dipolar magnetic field of pulsar B as suggested by Lyutikov & Thompson and such
a geometric connection explains that the observed periodicity is harmonically
related to pulsar B's spin frequency. We observe that the eclipses require a
sharp transition region beyond which the plasma density drops off abruptly.
Such a region defines a plasmasphere which would be well inside the
magnetospheric boundary of an undisturbed pulsar. It is also two times smaller
than the expected standoff radius calculated using the balance of the wind
pressure from pulsar A and the nominally estimated magnetic pressure of pulsar
B.Comment: 9 pages, 7 figures, 3 tables, ApJ in pres
Green Bank Telescope Observations of the Eclipse of Pulsar "A" in the Double Pulsar Binary PSR J0737-3039
We report on the first Green Bank Telescope observations at 427, 820 and 1400
MHz of the newly discovered, highly inclined and relativistic double pulsar
binary. We focus on the brief eclipse of PSR J0737-3039A, the faster pulsar,
when it passes behind PSR J0737-3039B. We measure a frequency-averaged eclipse
duration of 26.6 +/- 0.6 s, or 0.00301 +/- 0.00008 in orbital phase. The
eclipse duration is found to be significantly dependent on radio frequency,
with eclipses longer at lower frequencies. Specifically, eclipse duration is
well fit by a linear function having slope (-4.52 +/- 0.03) x 10^{-7}
orbits/MHz. We also detect significant asymmetry in the eclipse. Eclipse
ingress takes 3.51 +/- 0.99 times longer than egress, independent of radio
frequency. Additionally, the eclipse lasts (40 +/- 7) x 10^{-5} in orbital
phase longer after conjunction, also independent of frequency. We detect
significant emission from the pulsar on short time scales during eclipse in
some orbits. We discuss these results in the context of a model in which the
eclipsing material is a shock-heated plasma layer within the slower PSR
J0737-3039B's light cylinder, where the relativistic pressure of the faster
pulsar's wind confines the magnetosphere of the slower pulsar.Comment: 12 pages, 3 figure
Relativistic Particle Acceleration in a Folded Current Sheet
Two-dimensional particle simulations of a relativistic Harris current sheet
of pair plasmashave demonstrated that the system is unstable to the
relativistic drift kink instability (RDKI) and that a new kind of acceleration
process takes place in the deformed current sheet. This process contributes to
the generation of non-thermal particles and contributes to the fast magnetic
dissipation in the current sheet structure. The acceleration mechanism and a
brief comparison with relativistic magnetic reconnection are presented.Comment: 11 preprint pages, including 3 .eps figure
Time-dependence in Relativistic Collisionless Shocks: Theory of the Variable "Wisps" in the Crab Nebula
We describe results from time-dependent numerical modeling of the
collisionless reverse shock terminating the pulsar wind in the Crab Nebula. We
treat the upstream relativistic wind as composed of ions and electron-positron
plasma embedded in a toroidal magnetic field, flowing radially outward from the
pulsar in a sector around the rotational equator. The relativistic cyclotron
instability of the ion gyrational orbit downstream of the leading shock in the
electron-positron pairs launches outward propagating magnetosonic waves.
Because of the fresh supply of ions crossing the shock, this time-dependent
process achieves a limit-cycle, in which the waves are launched with
periodicity on the order of the ion Larmor time. Compressions in the magnetic
field and pair density associated with these waves, as well as their
propagation speed, semi-quantitatively reproduce the behavior of the wisp and
ring features described in recent observations obtained using the Hubble Space
Telescope and the Chandra X-Ray Observatory. By selecting the parameters of the
ion orbits to fit the spatial separation of the wisps, we predict the period of
time variability of the wisps that is consistent with the data. When coupled
with a mechanism for non-thermal acceleration of the pairs, the compressions in
the magnetic field and plasma density associated with the optical wisp
structure naturally account for the location of X-ray features in the Crab. We
also discuss the origin of the high energy ions and their acceleration in the
equatorial current sheet of the pulsar wind.Comment: 13 pages, 4 figures, accepted to ApJ. High-resolution figures and
mpeg movies available at http://astron.berkeley.edu/~anatoly/wisp
Arrival processes in port modeling: insights from a case study
This paper investigates the impact of arrival processes on the ship handling process. Two types of arrival processes are considered: controlled and uncontrolled. Simulation results show that uncontrolled arrivals of ships perform worst in terms of both ship delays and required storage capacity. Stock-controlled arrivals perform best with regard to large vessel delays and storage capacity. The combination of stock-controlled arrivals for large vessels and equidistant arrivals for barges also performs better than the uncontrolled process. Careful allocation of ships to the mooring points of a jetty further improves the efficiency
Statistics of Neutron Stars at the Stage of Supersonic Propeller
We analyze the statistical distribution of neutron stars at the stage of a
supersonic propeller. An important point of our analysis is allowance for the
evolution of the angle of inclination of the magnetic axis to the spin axis of
the neutron star for the boundary of the transition to the supersonic propeller
stage for two models: the model with hindered particle escape from the stellar
surface and the model with free particle escape. As a result, we have shown
that a consistent allowance for the evolution of the inclination angle in the
region of extinct radio pulsars for the two models leads to an increase in the
total number of neutron stars at the supersonic propeller stage. This increase
stems from he fact that when allowing for the evolution of the inclination
angle for neutron stars in the region of extinct radio pulsars and,
hence, for the boundary of the transition to the propeller stage, this
transition is possible at shorter spin periods (P~5-10 s) than assumed in the
standard model.Comment: 15 pages, 6 figures; scale corrected for figures 3-
On the effect of ship arrival processes on jetty and storage capacity
Ports provide jetty facilities for ships to load and unload their cargo. Jetty capacity is costly and therefore limited, causing delays for arriving ships. However, ship delays are also costly, so terminal operators attempt to minimize their number and duration. Here, simulation has proved to be a very suitable tool. However, in port simulation models, the impact of the arrival process of ships on the model outcomes tends to be underestimated. This report considers three arrival processes: stock-controlled, equidistant, and uncontrolled. We assess how their deployment in a port simulation model,based on data from a real case study, affects the efficiency of the loading and unloading process, making a case for careful modeling of arrival processes in port simulations. Uncontrolled, which is an assumed arrival process property in many client-oriented simulations, actually performs worst in terms of both ship delays and required storage capacity. Stock-controlled arrivals perform best with regard to large vessel delays and storage capacity. Additional control of the arrival process through the application of a priority scheme in processing ships further impacts efficiency in all three cases
Transverse quasilinear relaxation in inhomogeneous magnetic field
Transverse quasilinear relaxation of the cyclotron-Cherenkov instability in
the inhomogeneous magnetic field of pulsar magnetospheres is considered. We
find quasilinear states in which the kinetic cyclotron-Cherenkov instability of
a beam propagating through strongly magnetized pair plasma is saturated by the
force arising in the inhomogeneous field due to the conservation of the
adiabatic invariant. The resulting wave intensities generally have nonpower law
frequency dependence, but in a broad frequency range can be well approximated
by the power law with the spectral index -2. The emergent spectra and fluxes
are consistent with the one observed from pulsars.Comment: 14 Pages, 4 Figure
- …