7,241 research outputs found

    Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles

    Get PDF
    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation

    Zenithal bistable device: comparison of modeling and experiment

    Get PDF
    A comparative modeling and experimental study of the zenithal bistable liquid crystal device is presented. A dynamic Landau de Gennes theory of nematic liquid crystals is solved numerically to model the electric field induced latching of the device and the results are compared with experimental measurements and theoretical approximations. The study gives a clear insight into the latching mechanism dynamics and enables the dependence of the device latching on both material parameters and surface shape to be determined. Analytical approximation highlights a route to optimize material selection in terms of latching voltages and the numerical model, which includes an accurate surface representation, recovers the complex surface shape effects. Predictions of device performance are presented as a function of both surface anchoring strength and surface shape and grating pitch. A measurement of the homeotropic anchoring energy has been undertaken by comparing the voltage response as a function of cell gap; we find the homeotropic anchoring energies can be varied in the range 0.5 to 4 (10-44 J m-2)

    Determination of the forward slope in p pp~p and pˉ p\bar p~p elastic scattering up to LHC energy

    Full text link
    In the analysis of experimental data on ppp p (or pˉp\bar p p) elastic differential cross section it is customary to define an average forward slope bb in the form exp(bt)\exp{(-b|t|)}, where tt is the momentum transfer. Taking as working example the results of experiments at Tevatron and SPS, we will show with the help of the impact picture approach, that this simplifying assumption hides interesting information on the complex non-flip scattering amplitude, and that the slope bb is not a constant. We investigate the variation of this slope parameter, including a model-independent way to extract this information from an accurate measurement of the elastic differential cross section. An extension of our results to the LHC energy domain is presented in view of future experiments.Comment: 12 pages, 6 figures, to appear in EPJ

    High Energy Hadron-Nucleus Cross Sections and Their Extrapolation to Cosmic Ray Energies

    Get PDF
    Old models of the scattering of composite systems based on the Glauber model of multiple diffraction are applied to hadron-nucleus scattering. We obtain an excellent fit with only two free parameters to the highest energy hadron-nucleus data available. Because of the quality of the fit and the simplicity of the model it is argued that it should continue to be reliable up to the highest cosmic ray energies. Logarithmic extrapolations of proton-proton and proton-antiproton data are used to calculate the proton-air cross sections at very high energy. Finally, it is observed that if the exponential behavior of the proton-antiproton diffraction peak continues into the few TeV energy range it will violate partial wave unitarity. We propose a simple modification that will guarantee unitarity throughout the cosmic ray energy region.Comment: 8 pages, 9 postscript figures. This manuscript replaces a partial manuscript incorrectly submitte

    Trends and Regional Variation in Hip, Knee and Shoulder Replacement

    Get PDF
    Analyzes patterns in underuse or overuse of joint replacements among Medicare beneficiaries by geographic regions and race/ethnicity. Explores underlying factors and highlights the need for physician and patient education and shared decision making

    A new catalog of photometric redshifts in the Hubble Deep Field

    Get PDF
    Using the newly available infrared images of the Hubble Deep Field in the J, H, and K bands and an optimal photometric method, we have refined a technique to estimate the redshifts of 1067 galaxies. A detailed comparison of our results with the spectroscopic redshifts in those cases where the latter are available shows that this technique gives very good results for bright enough objects (AB(8140) < 26.0). From a study of the distribution of residuals (Dz(rms)/(1+z) ~ 0.1 at all redshifts) we conclude that the observed errors are mainly due to cosmic variance. This very important result allows for the assessment of errors in quantities to be directly or indirectly measured from the catalog. We present some of the statistical properties of the ensemble of galaxies in the catalog, and finish by presenting a list of bright high-redshift (z ~ 5) candidates extracted from our catalog, together with recent spectroscopic redshift determinations confirming that two of them are at z=5.34 and z=5.60.Comment: 28 pages, 12PS+4JPEG figures, aaspp style. Accepted for publication in The Astrophysical Journal. The catalog, together with a clickable map of the HDF, Tables 4 and 5 (HTML, LaTeX or ASCII format), and the figures, are available at http://bat.phys.unsw.edu.au/~fsoto/hdfcat.htm

    Eikonal profile functions and amplitudes for pp\rm pp and pˉp\bar{\rm p}{\rm p} scattering

    Full text link
    The eikonal profile function J(b)J(b) obtained from the Model of the Stochastic Vacuum is parametrized in a form suitable for comparison with experiment. The amplitude and the extended profile function (including imaginary and real parts) are determined directly from the complete pp and pˉ\bar{\rm p}p elastic scattering data at high energies. Full and accurate representation of the data is presented, with smooth energy dependence of all parameters. The changes needed in the original profile function required for description of scattering beyond the forward direction are described.Comment: Latex, 28 pages and 16 figure

    Global optical potential for nucleus-nucleus systems from 50 MeV/u to 400 MeV/u

    Full text link
    We present a new global optical potential (GOP) for nucleus-nucleus systems, including neutron-rich and proton-rich isotopes, in the energy range of 5040050 \sim 400 MeV/u. The GOP is derived from the microscopic folding model with the complex GG-matrix interaction CEG07 and the global density presented by S{\~ a}o Paulo group. The folding model well accounts for realistic complex optical potentials of nucleus-nucleus systems and reproduces the existing elastic scattering data for stable heavy-ion projectiles at incident energies above 50 MeV/u. We then calculate the folding-model potentials (FMPs) for projectiles of even-even isotopes, 822^{8-22}C, 1224^{12-24}O, 1638^{16-38}Ne, 2040^{20-40}Mg, 2248^{22-48}Si, 2652^{26-52}S, 3062^{30-62}Ar, and 3470^{34-70}Ca, scattered by stable target nuclei of 12^{12}C, 16^{16}O, 28^{28}Si, 40^{40}Ca 58^{58}Ni, 90^{90}Zr, 120^{120}Sn, and 208^{208}Pb at the incident energy of 50, 60, 70, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, and 400 MeV/u. The calculated FMP is represented, with a sufficient accuracy, by a linear combination of 10-range Gaussian functions. The expansion coefficients depend on the incident energy, the projectile and target mass numbers and the projectile atomic number, while the range parameters are taken to depend only on the projectile and target mass numbers. The adequate mass region of the present GOP by the global density is inspected in comparison with FMP by realistic density. The full set of the range parameters and the coefficients for all the projectile-target combinations at each incident energy are provided on a permanent open-access website together with a Fortran program for calculating the microscopic-basis GOP (MGOP) for a desired projectile nucleus by the spline interpolation over the incident energy and the target mass number.Comment: 25 pages, 13 figure

    Spatial Scaling in Model Plant Communities

    Full text link
    We present an analytically tractable variant of the voter model that provides a quantitatively accurate description of beta-diversity (two-point correlation function) in two tropical forests. The model exhibits novel scaling behavior that leads to links between ecological measures such as relative species abundance and the species area relationship.Comment: 10 pages, 3 figure
    corecore