General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR-134941 VOLUME Y

SOT

ENERGY CONVERSION ALTERNATIVES STUDY -ECAS-

WESTINGHOUSE PHASE I FINAL REPORT

Volume X - COMBINED GAS-STEAM TURBINE CYCLES

by D.J. Amos, R.M. Lee, and R.W. Foster-Pegg

WESTINGHOUSE ELECTRIC CORPORATION RESEARCH LABORATORIE

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION NATIONAL SCIENCE FOUNDATION

> **NASA Lewis Research Center** Contract NAS 3-19407

(NASA-CR-134941-Vol-5) ENERGY CONVERSION ALTERNATIVES STUDY (ECAS), WESTINGHOUSE PHASE 1. VOLUME 5: COMBINED GAS-STEAM TURBINE CYCLES Final Report (Westinghouse Research Labs.) 114 F HC \$5.50 CSCL 10 Unclas 28170 CSCL 10E G3/44

N76-23696

I. Report No. NASA CR-134941 Volume V	3. Recipient's Catalog No.
4. Title and Subtitle ENERGY CONVERSION ALTERNATIVES STUDY (ECAS), WESTINGHOUSE PHASE I FINAL REPORT	5. Report Date February 12, 1976
VOLUME V - COMBINED GAS-STEAM TURBINE CYCLES	6. Performing Organization Code
7. Author(s) D. J. Amos, R. W. Foster-Pegg and R. M. Lee	8. Performing Organization Report No. Westinghouse Report No. 76-9E9-ECAS-Riv.5
9. Performing Organization Name and Address	10. Work Unit No.
Research Laboratories Pittsburgh. PA. 15235	11. Contract or Grant No. NAS 3-19407
	13. Type of Report and Period Covered
2. Sponsoring Agency Name and Address Energy Research and Development Administration	Contractor Report
National Aeronautics and Space Administration National Science Foundation Washington, D.C.	14. Sponsoring Agency Code
5. Supplementary Notes Project Managers:	
W. J. Brown, NASA Lewis Research Center, Cleveland, OH 44135	15235

Combined cycle gas-steam turbine plants can have efficiencies several points higher than convention steam plants. Induction of low pressure steam into the steam turbine improves the plant efficiency Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures studied.

The coal using combined cycle plant with an integrated low-Btu gasifier calculated to have a plant efficiency of 43.6%, a capitalization of \$497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kWh). This combined cycle plant should be considered for base load power generation.

	<u> 2014년 2</u> 월 19일 등 2월 19일 등 일종 일종 일종 (1993년 1993년 199
17. Key Words (Suggested by Author(s))	18. Distribution Statement
gas induction	
turbine coal	
	Unclassified - Unlimited
sream	
combined cost	
10 Security Classif Infahlance	
Line Land Fried	of this page) 21. No. of Pages 22, Price
UNCIRDULICU UNCIRDULICU	

* For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-C-168 (Rev. 10-75)

ACKNOWLEDGMENTS

Section 6 entitled "Combined Gas-Steam Turbine Cycles" was centered in the Westinghouse Gas Turbine Engine Division and was coordinated by D. J. Amos.

Others contributing to the concept study were:

- R. G. Glenn, who prepared the turbine island arrangement drawings and the gas turbine engine cross sectional drawings.
- J. E. Grube, who prepared the correlations for gas turbine pricing including the price variations for the several parametric points.
- R. M. Lee, who conducted a large majority of the thermodynamic efficiency calculations.
- R. W. Foster-Pegg, who decided upon the parametric points to be evaluated and calculated the efficiencies of plants which used steam turbine inductions and/or throttle condition variations.
- J. Fake and H. E. Wheeler of the Westinghouse Heat Transfer who designed and priced the heat recovery steam generators used for the study.
- J. L. Steinberg and G. J. Silvestri of the Westinghouse Steam Turbine Division who calculated the performance and price of certain steam turbines.
- J. J. Kelly, Jr. of Power Generation Service Division who provided the erection cost estimates for the heat recovery steam generator.

i

C. T. McCreedy and S. M. Scherer of Chas T. Main, Inc. of Boston, who prepared the balance of plant description and costing, site drawings, and provided consultation on plant island arrangements and plant constructability.

12

TABLE OF CONTENTS

NASA Report No. NASA CR-134941

「「「「「「「「」」」」

Volume	1	Section	1	INTRODUCTION AND SUMMARY
		Section	2	GENERAL ASSUMPTIONS
Volume	II	Section	3	MATERIALS CONSIDERATIONS
Volume	[11	Section	4	COMBUSTORS, FURNACES, AND LOW- BTU GASIFIERS
Volume	IV	Section	5	OPEN RECUPERATED AND BOTTOMED GAS TURBINE CYCLES
Volume	V	Section	6	COMBINED GAS-STEAM TURBINE CYCLES
Volume	VI	Section	7	CLOSED-CYCLE GAS TURBINE SYSTEMS
Volume	VII	Section	8	METAL VAPOR RANKINE TOPPING-STEAM BOTTOMING CYCLES
Volume	VIII	Section	9	OPEN-CYCLE MHD
Volume	IX	Section	10	CLOSED-CYCLE MHD
Volume	x	Section	11	LIQUID-METAL MHD SYSTEMS
Volume	XI	Section	12	ADVANCED STEAM SYSTEMS
Volume	XII	Section	13	FUEL CELLS

1

111

EXPANDED TABLE OF CONTENTS Volume V

in de No				Page
ACI	NOWLE	DGMENTS		í
TAI	BLE OF	CONTEN	ITS	iii
SUN	MARY	• • • •	에 가장 가려 있는 것 같은 것 같	vi
6.	СОМВ	INED GA	S-STEAM TURBINE CYCLES	6-1
	6.1	State	of the Art	6-1
		6.1.1	Supercharged Boiler Combined Cycles	6-2
		6.1.2	Exhaust Boiler Combined Cycles	6-2
		6.1.3	Industrial Combined Cycles	6-5
		6.1.4	Combined-Cycle Boilers	6-5
		6.1.5	Current Status of Combined Cycles	6-7
	6.2	Descri	ption of Parametric Points to be Evaluated	6-7
	6.3	Approa	ch	6-18
	6.4	Result	s of the Parametric Study	6-22
	a 1910 - Santa 1910 - Santa	6.4.1	Selected Case Results	6-29
		6.4.2	Results of Parametric Variations	6-35
	6.5	Capita	l and Installation Cost of Plant Components	6-47
		6.5.1	Description of Base Case Power Plants	6-47
		6.5.2	Approximate Size and Weight of Major Components	6-57
	•	6.5.3	Price Determination Procedure	6-61
		6.5.4	Tabulation of Overall Plant Material and	udi ya di se di Baligi se di ya
			Installation Costs	6-65
	6.6	Analys	is of Overall Cost of Electricity	6-79
	6.7	Conclu	sions and Recommendations	6-95
		6.7.1	Conclusions	6-95
		6.7.2	Recommendations	6-102

EXPANDED TABLE OF CONTENTS (Continued)

		Page
6.7.2.1	Induction Steam Turbine-Generator	6-102
6.7.2.2	Gas Turbine Inlet Temperature	6-103
6.7.2.3	Integrated Coal Gasification System	6-103
6.8 References .		6-104

V

SUMMARY

The combined gas-steam turbine cycles studied typically uses four 1478°K. (2200°F), 12 to 1 gas turbines which exhaust into modular heat recovery steam generators. A single subcritical steam turbine generator bottoms these units. The cycle parametric investigations are based on the use of clean distillate from coal as fuel. Specific arrangements are also evaluated which include the firing of low-Btu gas from an integrated coal gasifier. Both reheat and nonreheat steam cycles are considered. Induction of supplementary steam into the turbine cycle at one or two temperatures below the throttle pressure is also considered, the first into the cold reheat pipe and, if used, the second into the crossover pipe between the IP and LP turbines.* Low pressure steam inductions provides a closer fit between the gas turbine exhaust gas cooling curve and the water-steam heating curve and result in a lower stack gas temperature. Typically, the use of steam induction can add 2 or 3 points to the plant cycle efficiency.

The 16.547 MPa/811°K/811°K (2400 psi/1000°F/1000°F) reheat steam cycle with an unfired boiler and two steam inductions after the throttle is the most efficient cycle investigated. This steam plant with a 1478°K (2200°F) gas turbine burning clean distillate from coal and a 16.7°K (30°F) approach of the exhaust gas to the saturation throttle steam temperature in the boiler achieves a cycle efficiency of about 48%. This is a 20% reduction in heat rate compared to the oil burning all-steam plant with similar design sophistication.

Post firing of the boiler of a combined gas-steam turbine cycle is found to increase the net plant power output but, in general, to worsen efficiency.

 Induction of 206.8 kPa (30 psi) abs steam into the low pressure turbine is assumed most commonly.

vi

Combined cycle efficiency improves significantly as the gas turbine inlet temperature is increased. At a turbine inlet temperature of 1478°K (2200°F), an efficiency improvement of 2 points/55.6°K (100°F) increase in turbine inlet temperature is found. This tapers to about 1 point/55.6°K (100°F) at turbine inlet temperatures of 1700°K (2600°F).

i,

A gas turbine pressure ratio of about 12 to 1 is close to optimum for these combined cycles at all gas turbine inlet temperatures studied.

The 783 MWe combined cycle plant burning low-Btu gas from an integrated coal gasifier is found to have an efficiency of 42.3% compared to 46.2% for the corresponding clean distillate burning plant. The coal using plant has a capitalization of 497/kW, just double that of the distillate burning plant. Nevertheless, the cost of electricity from the coal using plant is 6.75 mills/MJ (24.3 mills/kWh) compared to 7.68 mills/ MJ (27.65 mills/kWh) for the distillate burning plant due to the difference in fuel cost [0.806/MJ ($0.85/10^6$ Btu) for coal compared to 2.46/MJ($2.60/10^6$ Btu) for clean distillate from coal]. Coal using combined cycle plants, therefore, have potential for future economic base load power generation systems.

vii

6. COMBINED GAS-STEAM TURBINE CYCLES

6.1 State of the Art

6.1.1 Supercharged Boiler Combined Cycles

The first combined steam and gas turbine power plants were of the supercharged boiler type. About 40 supercharged boiler combined cycles were built in the 1930 to 1940 era by Brown Boveri, with capacities of up to 30 MW (References 6.1, 6.2, and 6.3). The first exhaust boiler combined cycles were constructed about 1950, and their application has progressed at a relatively consistent rate up to the present day.

A supercharged boiler cycle is more efficient than an exhaust boiler cycle when it is advantageous to fire the boiler; an unfired exhaust boiler combined cycle is the more efficient when power from the gas turbine and power generated by recovered heat is obtained at higher efficiency than power produced by firing the boiler (Reference 6.4). Thus, low-temperature, less efficient gas turbines favor fired supercharged boiler cycles; and higher-temperature, more efficient gas turbines favor unfired exhaust boiler cycles. The thermodynamic transition where the more efficient system changes from supercharged to exhaust boiler cycle is at a gas turbine firing temperature of about 1200°K (1700°F).

The thermodynamic superiority of the supercharged boiler cycle with lower-temperature gas turbines resulted in much attention being given to this cycle in the 1950s (References 6.5 through 6.10). The supercharged boiler cycle requires a boiler that is completely different from a conventional boiler and a somewhat special gas turbine. It is impossible to operate the steam and gas turbines of a supercharged combined cycle separately. These disadvantages discouraged development of supercharged boilers in this country, except for a few naval vessels where the size reduction of the boiler offered particular advantages (Reference 6.11).

In Europe, where industrial gas turbine firing temperatures are lower than in the United States, supercharged boilers are still receiving attention. At Lünen, Germany, a supercharged boiler combined cycle of 170 MW is in operation, and a 400 MW plant is being planned by the same company (Reference 6.12). It is reported from Russia that several combined cycles with supercharged boilers have been constructed up to 200 MW in size (References 6.13 and 6.14).

D

Combustion of coal and residual oil in pressurized fluid beds of limestone and dolomite is being advocated as a means of capturing the sulfur in the fuels. The fluid beds are contained in a form of supercharged boiler supplied with compressed air from a gas turbine compressor driven by an expander. The products of combustion in the boiler exhaust to the atmosphere through the expander, thus driving the compressor and producing useful power. Efficiency improvements possible with this system are small because fluid bed combustor operating temperatures are limited by the desulfurization reaction. The dusty effluent from the bed poses significant problems. Plans currently exist for a demonstration plant project to evaluate this type of system.

6.1.2 Exhaust Boiler Combined Cycles

<u>C</u>

Up to about 1965, combined cycles were viewed as a means of improving the efficiency of base-load plants and, in this era, gas turbine firing temperatures favored boiler firing.

As stated earlier, the supercharged boiler cycle was the more efficient cycle at the gas turbine temperatures prevailing in the early 1960s. The exhaust boiler cycle, however, has the advantage of using a relatively normal boiler design, and the capability for separate operation of the gas turbine and steam portions of the combined cycle. These advantages of the exhaust boiler cycle outweighed any thermodynamic advantage of the supercharged boiler cycle and confined serious consideration of combined cycles to the exhaust boiler cycle only.

In the early designs, emphasis was on low excess air-fired boiler combined cycles, as examplified by the Horseshoe Lake unit of

Oklahoma Gas and Electric Company (References 6.15 and 6.16) and the San Angelo Station of West Texas Utilities (References 6.17 through 6.21). Plants of this type offer efficiency improvements of 5 to 10%; but at the low cost of natural gas prevailing in the 1960s, savings of this order were generally regarded as insufficient to justify the selective fuel requirements of gas turbines, and few combined cycles were ordered by the utility companies.

The plants referenced above include gas turbines with base-load firing temperatures of 1061 and 1089°K (1450 and 1500°F) and steam conditions of 9.997 and 12.41 MPa (1450 and 1800 psi) gauge, 811°K (1000°F), with reheat of 811°K (1000°F). Both plants operate on natural gas at efficiencies equivalent to about 39% on oil.

The availability and reliability of these and other similar combined cycles have, in some cases, been better than comparable conventional plants.

A need has always existed for small, high-efficiency, economical power plants. Small size is unfavorable to high steam pressure conditions, and low-pressure steam is relatively inefficient. As a result, small-size steam power plants are relatively inefficient and of high specific cost. Gas turbines are relatively low in cost in the required small size and, in combined cycles, offer good efficiency. Firing the boiler of a small combined cycle is unattractive because the plant capacity is increased thereby, and the objective of a small capacity plant is violated. To satisfy these various requirements, designs were evolved for combined cycles of the highest possible efficiency with unfired boilers. With an unfired boiler and single steam pressure, the heat sink for the exhaust gas below saturation temperature is insufficient to absorb all potentially useful heat. This otherwise wasted heat can be employed to raise useful steam at a lower pressure and a lower saturation temperature than the main steam; and, therefore, multipressure steam cycles have become common for combined cycles with unfired or lightly fired boilers (Reference 6.26).

About 1970, a need developed for utility power plants to generate midrange capacity; that is, for power which is required in daytime during midweek but is not required at night or weekends. Plants to supply this power are required to start and stop daily. Steam plants with high-pressure and high-temperature steam conditions have been found unsatisfactory in this service because of high stand-by costs when kept hot, or high start-up costs when started slowly to minimize thermal gradients and cracking of casings.

Nonreheat steam plants with lower pressure and temperature steam are better suited to this cycling service, but efficiency is poor. The combination of gas turbines with nonreheat steam turbines provides an obvious and well-suited midrange power plant with excellent efficiency and good tolerance to cycling.

Many combined cycles of this general type are in service or on order. Oil-fired combined cycles with nonreheat steam turbines and unfired or lightly fired boilers are approaching 39% efficiency, and plants on order with higher-temperature gas turbines are expected to exceed 42% efficiency firing clean distillate oil. Figure 6.1 shows the Westinghouse PACE (Power at Combined Efficiency) plant installed at the Comanche Station of Public Service of Oklahoma. It has been in service since early 1974.

6.1.3 Industrial Combined Cycles

The potential for plant efficiency improvements from the combination of a process steam plant with a gas turbine are most attractive to unregulated industrial companies. Gas turbines have been added to produce both electric power and piocess steam. Industrial companies were quick to adopt the combined cycle concept. For many years the capacity of combined cycles in the service of the petrochemical industry greatly exceeded electrical utility capacity (Reference 6.22).

6.1.4 <u>Combined-Cycle Boilers</u>

Combined cycles which used gas turbines with firing temperatures lower than about 1144°K (1600°F) provided the highest efficiency with boiler firing. The boilers in these plants were similar to conventional boilers for all steam power plants, with the air preheaters replaced by low-temperature economizers. As in conventional boilers, fuel was fired to use 90% of the oxygen in the combustion air (Reference 6.23).

In conventional boilers, maximum heat transfer rates are limited by steam blanketing inside the tubes and by tube metal temperatures. Tube spacing, gas velocities, and furnace volumes are limited by this consideration. With this situation, there is no advantage to be gained from increasing the gas-side surface area of tubes by using an extended surface; conventional boilers use plain tubes, except in some cases where extended surface tubes are used in the cooler regions of economizers.

About 1960, a need developed in industry for boilers to recover the heat from gas turbine exhaust to raise steam for industrial process use. These heat recovery boilers were required to recover heat from exhaust gas between the gas turbine exhaust of 700 to 811°K (800 to 1000°F) and about 422°K (300°F). If the heat recovery boiler is fired, the top temperature may reach 1089°K (1500°F). Traditional boiler designs with bare tubes resulted in a very large tube footage because of the low heat transfer rate on the gas side and the small available log mean temperature difference. Boilers made with bare tubes for this application were, consequently, both large and extremely costly. As a result, some smaller boiler manufacturers developed special boiler designs for this service, using externally finned tubes. The extended surface increases the heat transfer area on the gas-side surface (outside) of the tubes significantly and permits a substantial reduction in the footage of tube required in the boilers (References 6.24 and 6.25). During the 1960s, heat recovery boilers with extended surface were extensively adopted by the chemical process industry. The larger utility boiler manufacturers subsequently adopted extended surface tubes for the lowtemperature economizers of combined-cycle boilers.

By 1970, combined cycles with little or no firing of the boilers were on order for midrange utility applications. The low gas temperatures

through the boilers favored finned tubes, which are now used throughout the typical combined-cycle boiler.

6.1.5 Current Status of Combined Cycles

The current emphasis on clean fuel for environmental reasons, and the high cost of fuel in general, has placed a premium on efficient power generation. The situation in combined cycles today is similar to that in the 1960s, with the emphasis still on efficiency but with a much higher efficiency required because of the relatively higher cost of fuel.

The higher inlet and outlet temperatures of present-day gas turbines has shifted the optimum combination of gas and steam turbines from fired to unfired boilers. With respect to the steam system, the reheat cycle is the most efficient and economical cycle today, as it was in 1960. The optimum high-efficiency combined cycles of the future will consist of gas turbines exhausting to unfired boilers producing and reheating steam for a reheat steam turbine. Throttle steam pressures will be comparable to conventional fossil fuel plants at about 13.79 MPa (2000 psi) gauge.

To make full recovery of the heat in the gas turbine exhaust at best efficiency, supplementary steam will be raised at lower than throttle pressure, superheated, and inducted into the steam turbine as has been demonstrated in several existing combined cycles. All facets of combined cycles to the above specification have been demonstrated, although with relatively lower steam conditions and smaller equipment size than those suggested for future designs.

6.2 Description of Parametric Points to Be Evaluated

All of the combined-cycle studies were carried out for the exhaust boiler cycle arrangements with the ranges of parametric point values illustrated in Table 6.1. Over 90 parametric points have been identified for investigation of variations in gas turbine, steam turbine, and heat recovery steam generator parameters. Variations of the fuels

> REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

FOLDOUT FRAME

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

Combined Gas-Steam		Gas Turbine	Parameters		Stea	m Turbine Par
Open Cycle Parametric Points	Turbine Inlet Temperature, °F	Compressor Pressure Ratio	Gas Turbine Cooling	Fuel	St. Turb. Throttle Pressure, psig	St. Turb. Throttle Temperature
Base Case A	2200	12	(See Note 2)	Low-Btu Gas	2400	1000
Base Case B	and the second second second			Dist. from Coal	1250	950
					1450	1000
Steam Turbine					1450	1000
Parameter Variations					1800	1000
Steam Generator Parameter Variations for Base Case A						
Base Case B)						
Gas Turbine Parameter Variations for Base Case A (Duplicate for Base Case B)	1800, 2000, 2200, 2400, 2600	8, 12, 16, 20				
Gas Turbine Parameter Variations for Base Case A		8, 12, 16, 20	1, 2, 3			
				High-Btu Gas		
	1800, 2000, 2400		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Low-Btu Gas		
		12, 20		Low-Btu Gas	The season	

NOTES:

1. All blank spaces have same value as Base Case A unless otherwise noted

2. Gas turbine blade cooling configurations

1. Turbine vanes and blades air cooled

Turbine vanes ceramic, blades air cooled
Turbine vanes ceramic, blades ceramic

3. Or as limited by approach temperature

4. Steam induction utilized low temperature heat

5. Supplementary firing for gas turbine inlet temperature 2000°F

FOLDOUT FRAME 2

Sect 1

Durg . 851 00 20

Table 6. 1- Combined gas-steam turbine cycles

e Param	ieters						Steam Ge	nerator Paramete	rs			
Turb. rottle ature ³ ,	St. Turb. Reheat Temperature ³ ,	Condenser Cooling Means	Supplm. Firing	Boiler Gas Side Press. Drop (ΔP/P), %	Evaporator Approach (Pinch), °F	Sphtr. Approach (Pinch), °F	Reheater Approach (Pinch), °F	Press. Drop Drum to Throttle (ΔP/P),%	Press. Drop Reheater Steam (∆P/P),%	Press. Drop Economizer Water (ΔP/P),%	F.W. Temp. Entering L.T. Econ., °F	Configuration Special Features
00	1000	Wet Tower		5	30	50	50	10	10	10	250	(See Note 4)
50		Choice 125					dine (keye)	7		7		
00		attender of the second	and the second second									
00	1000											
00	1000					Selfster i e	a contract of					
							1.1.1.1.1.1.1		and shares of			
				Carlor and the second	15 40							
				4.6	10,40	1						
				4.0							220, 280	
												Omit Induction
		Once Thru										
		Dry Tower				1						
			4 Levels									
aller all			Note 5				1.					
				A CARLES AND A	10.00	10000			and the second			

(all coal derived) are considered, with principal emphasis placed on two fuels: low-Btu gas and distillate derived from coal. This distinction forms one basis for the identifying two base cases. Base Case A incorporates an integrated, low-Btu gasification plant; Base Case B is fueled by liquid distillate from coal.

Most Base Case A parameters were selected to investigate a moderate, but distinct, extension beyond current state-of-the-art combined-cycle design practice. The gas turbine parameters selected include an inlet temperature of 1478°K (2200°F) and a compressor pressure ratio of 12 to 1, and utilize advanced convection/impingement air-cooled vanes and blades. The steam plant selected utilizes a reheat cycle with steam conditions of 16.547 MPa/811°K/811°K (2400 psig/1000°F/1000°F) and/ a single low-pressure steam induction (the admission of low-pressure and low-temperature steam into the steam turbine at an appropriate admission point). The heat recovery steam generator is unfired and utilizes parallel superheater and reheater sections followed by HP evaporator, economizer, and LP evaporator sections. The plant utilizes an integrated low-Btu gasification system operating on Illinois No. 6 bituminous coal. The system, patterned after the on-going ERDA Process Demonstration Unit (PDU) program at the Westinghouse Waltz Mill, Pennsylvania site, utilizes a fluidized bed system with in-bed desulfurization. A schematic of the Base Case A cycle arrangement is shown in Figure 6.2.

The Base Case B power plant cycle arrangement is shown in Figure 6.3. This plant differs principally from the Base Case A plant with regard to fuel and steam cycle arrangements. The fuel selected for this plant is a coal-derived distillate from the H-Coal process, and the steam turbine utilizes an 8.610 MPa/783°K (1250 psig/950°F) nonreheat induction design similar to that used in current commercial combined-cycle plants. The heat recovery steam generator arrangement consists of a superheater, HP evaporator, economizer, and LP evaporator with deaerator feedwater system. The gas turbine parameters, with the exception of the fuel, are identical to those of Base Case A.

PRECEDING FAGESSMANK NOT FILMED

- 1

Ę

-

Fig. 6. 2 - Mass and heat balance schematic - Base CaseA - reheat

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

#

Dwg. 1675864

à

6-13

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

and painting

1

Deg. 2570568

÷.

Q.

25

Fig. 6.4-Cycle schematic for generalized steam cycle studies

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Additional studies have been identified in the areas of alternative steam turbine throttle conditions, heat recovery steam generator supplementary firing, and steam turbine induction. The general cycle schematic pertaining to these arrangements is given in Figure 6.4. This arrangement is of a general nature and allows for various combinations of feedwater heater arrangements, steam inductions at steam turbine reheat and crossover points, and supplementary firing of the heat recovery steam generator.

As shown in Table 6.1, the parametric point variations have been grouped according to investigations of steam turbine parameter (throttle condition) variations, heat recovery steam generator parameter variations, and gas turbine parameter variations. The alternative steam conditions under consideration, in addition to Base Cases A and B, are 9.997 MPa/811°K (1450 psig/1000°F) nonreheat, and 9.997 MPa/811°K/811°K (1450 psig/1000°F/1000°F) and 12.411 MPa/811°K/811°K (1800 psig/1000°F/ 1000°F) reheat steam cycle plants.

The steam generator parameter studies have been identified for investigation with both the cycle arrangements of Base Cases A and B. The Base Case A arrangement, however, incorporates an integrated low-Btu gasification system, and the Base Case B arrangement does not. To obtain a uniform basis for comparison, therefore, and to avoid the cumbersome aspect of performing parametric variations with a gasification plant, a modification of Base Case A, designated as Reference Case C, has been defined. This arrangement, shown schematically in Figure 6.5, duplicates the Base Case A arrangement exactly except for omitting the low-Btu gasification system. Using the Reference Case C and Base Case B arrangements, variations of evaporator approach temperature difference have been made from the base case value of 16.7°K (30°F) to 8.3 and 22.2°K (15 and 40°F). Boiler gas-side pressure drop ratios of 4 and 6% have been identified as variations and feedwater temperatures of 378 and 411°K (220 and 280°F) have been set for comparison with the base case value of 394°K (250°F). Heat rejection by means of once-through cooling and dry cooling towers

ì

1 \$1

 $\frac{i}{1}$

÷.,

ie C

Cardia Su

REFERENCE OF THE OF THE OF THE OF THE

has been selected for comparison with the base case wet tower method. As both Reference Case C and Base Case B include a single, low-pressure steam induction, the omission of this induction for each system has also been set up as a parametric variation.

As mentioned earlier, several additional cases are included (although not shown explicitly on Table 6.1) for a more general study of the use of steam induction. These cases have been set up in conjunction with the cycle model of Figure 6.4. This model has also been identified for use in the investigation of a heat recovery steam generator system with four-level supplementary firing for both the reheat and nonreheat steam cycle arrangements.

The gas turbine parameter variations identified in Table 6.1 for study with both Base Case A (Reference Case C arrangement) and Base Case B include both turbine inlet temperature and compressor pressure ratio. Turbine inlet temperature values of 1255, 1366, 1478, 1589, and 1700°K (1800, 2000, 2200, 2400, and 2600°F) have been identified for study. Compressor pressure ratios of 8, 12, 16, and 20 have been selected. In all cases advanced impingement and convection air-cooled blades and vanes are assumed.

The final category of parametric variations identified in Table 6.1 applies to the variation of gas turbine parameters of Base Case A for the veheat steam cycle only. In this category are included variations of gas turbine blade-cooling systems, including the use of ceramic gas turbine vanes and rotating blades alone and in combination. Parametric variations of these cooling systems have been selected with variations in compressor pressure ratio from 8 to 20 at a constant turbine inlet temperature of 1478°K (2200°F). The use of high-Btu coalderived fuel gas has been identified for a system calculation in addition to the low-Btu gas and clean distillate from coal-burning systems. Variations of the low-Btu gasification plant have been identified for study with a variation in turbine inlet temperature from 1255 to 1589°K (1800 to 2400°F) at the base case compressor pressure ratio of 12 to 1.

6.3 Approach

62

ta

As with the recuperated open-cycle system described in Section 5 of this report, most of the parametric point efficiency calculations for the gas-steam combined cycles were performed using the Westinghouse-developed OPTCYC computer program. Essentially, the same assumptions are made regarding calculation of the gas turbine portion of the combined cycle. These include specification of ambient conditions, compressor efficiency, gas turbine section cooling-flow usage, and the coal-derived distillate fuel properties.

1 Am

Following calculation of the gas turbine performance, the combined-cycle part of the program next performs a mass and energy balance between gas turbine exhaust gas and each heat exchanger in the heat recovery steam generator (refer to Figures 6.2 and 6.3). This system consists of a deaerator, low-pressure boiler, economizer, evaporator, superheater, and reheater (the latter is bypassed for a nonreheat cycle). Boiler feedwater heating is accomplished by the single deaerator receiving heat from the low-pressure boiler as well as from the economizer recirculation. Additional heat is obtained by extracting steam from the low-pressure steam turbine, if necessary. On the other hand, excess lowpressure steam can be inducted into the LP steam turbine to produce power. The program uses expansion lines of actual steam turbines to calculate performance. Thus, moisture content, exhaust loss, and end loading are all properly considered. With the steam flow and enthalpy known, the steam turbine power is computed and added to the gas turbine power. The net output of the combined plant is obtained after deducting mechanical and generator losses as well as plant auxiliary power requirements. The auxiliary power includes such items as boiler feed pump, circulating pumps, lube and fuel pumps, and cooling tower fan power. Based on the higher heating value of the fuel, combined plant efficiency is calculated and displayed against combined plant specific power based on compressor inlet airflow.

When a low-Btu gas fuel is used, the gasification subsystem is integrated by satisfying the specified characteristics of the gasification

system. As mentioned earlier, the Westinghouse Advanced Fluidized Bed process, currently being developed under ERDA contract, was assumed for this purpose. Process steam is extracted from cold reheat point after the HP steam turbine, and process air is bled from the combustor shell. It acquires a higher pressure, dictated by the gasification system pressure drop, via a booster compressor. A recuperator is used to alleviate the duties of the cooler and the booster compressor and raise the temperature of the process air before it enters the gasifier. In this case, the auxiliary power further includes the booster compressor power as well as all auxiliaries in the gasification system. Similarly, the heat from the spent sorbent oxidizer and cooler are recovered through the steam turbine and feed heating. Thus, the net combined plant efficiency represents the overall conversion of coal feed to electricity.

As indicated in Section 5.1, although current production drytype combustors (that is, combustors not utilizing water injection techniques) will pose potential problems with regard to NO_x emissions at high turbine inlet temperature burning conventional fuels, Task I calculations were performed without water injection for NO_x control. There are two reasons for this choice. First, we believe that several advanced combustion concepts (staged, premixed, and catalytic combustion) with proper development effort will yield satisfactory operation on conventional-type fuels without water injection. Second, the principal fuel under consideration (the coal-derived distillate from the H-coal process) has properties very similar to conventional petroleum-based distillate fuel. For combustion of low-Btu gas, calculations have indicated the NO_x problem to be potentially much less severe than with distillate fuels.

For the cases involving steam induction, various assumptions were made regarding induction steam condition and the location of induction into the steam turbine. For the base case steam cycle conditions, induction steam was generated at the deaerator pressure of 207 kPa (30 psi) abs and inducted through a special supply manifold at this pressure. In the cases of induction at the reheater and at the crossover

pipe between the IP and LP steam turbines, no special manifold is required.

The quantities of induction steam were obtained by heat balance between the gas-side exits from the induction steam evaporator and the next higher evaporator. For given assumptions of steam conditions and approach temperatures, there is a unique solution for the HP and induction steam quantities.

The feedwater temperature leaving the closed heaters and entering the deaerator is established by a heat balance below the LP evaporator which results in a gas temperature entering the stack of 411° K (280° F) and a water temperature entering the economizer of 394° K (250° F).

Variations of supplementary firing in the heat recovery steam generator covered the range from no firing to the maximum for efficient combustion with the oxygen in the vitiated exhaust of the gas turbine.

Supplementary firing increases the proportion of available heat in the boiler above the saturation temperature of the steam and, therefore, the quantity of high-pressure steam. At a supplementary firing temperature of 1033°K (1400°F), the feedwater for the high-pressure steam absorbs all the heat available below the evaporator and no heat remains to generate induction steam. The first level of boiler firing was selected at the point where no induction steam is generated.

Firing to a higher temperature results in a deficiency of heat in the economizer, which would result in a reduced feedwater temperature rise. This deficiency is corrected by heating a portion of the feedwater in a train of extraction feedwater heaters, as shown in the general calculation model, Figure 6.4. The maximum level of supplementary firing investigated was the case of 10% excess air. In this case, 35% of the feedwater is heated by the stack gas in a low economizer, and 65% of the feedwater is heated in the extraction feedwater heaters. An intermediate level of boiler firing is calculated where the quantities of feedwater heated by extraction steam and flue gas were about equal.

Definitions regarding gas turbine parameters and assumed values are identical to those (with the exception of recuperator and intercooler definitions) described in Section 5.3 of this report. For the additional combined-cycle components, typical component efficiencies, loss values, and auxiliary power requirements consistent with current Westinghouse design practice have been used.

Additional definitions pertaining to the steam section of the combined gas-steam cycle are as follows:

- Steam turbine throttle pressure nominal steam pressure at the main turbine stop valve
- Steam turbine throttle temperature nominal steam temperature at the main turbine stop valve
- Steam turbine reheat temperature nominal steam temperature at the intermediate pressure (IP) turbine inlet section
- Boiler gas-side pressure drop exhaust gas pressure drop from gas turbine section outlet to heat recovery steam generator exhaust
- Evaporator approach temperature difference minimum temperature difference between exhaust gas stream and high-pressure steam saturation temperature
- Superheater approach temperature difference temperature difference between gas turbine exhaust temperature and maximum superheater steam temperature
- Reheater approach temperature difference temperature difference between gas turbine exhaust temperature and maximum reheated steam temperature
- Pressure drop drum to throttle pressure drop between heat recovery steam generator high-pressure steam drum and steam turbine throttle pressure

- Pressure drop (feedheater) pressure drop between condensate pump and deaerator section
- Pressure drop (economizer water) pressure drop between boiler feed pump and steam drum
- Induction the process of introducing reduced pressure steam into the steam turbine at a location downstream of the main stop valve.

6.4 Results of the Parametric Study

An expanded form of the parametric point tabulation is given in Table 6.2. In this listing the parametric points are numbered for convenient reference and cover the ranges of values of the parameters identified in the summary Table 6.1.

Point 1 applies to Base Case A, and Point 2 corresponds to Base Case B. In Points 3, 4, and 5 the effects of varying steam throttle conditions are considered. Point 6, originally specified as a supercritical 24.132 MPa/811°K/811°K/811°K (3500 psig/1000°F/1000°F/1000°F), was not calculated. Variations of steam generator and steam turbine parameters, including approach temperature differences, feedwater temperature, and omission of the single low-pressure steam induction, were computed for a Base Case A-type reheat steam cycle in Points 7 through 13. The alternative heat rejection modes of once-through and dry-tower cooling are used in conjunction with the reheat-type steam bottoming plant in Points 14 and 15, respectively. The use of supplementary firing of the heat recovery steam generator has been investigated for Points 16 through 19. These studies apply to the reheat steam bottoming cycle with multiple induction, as was shown in Figure 6.4. The parametric variations of Points 20 through 32 are directly analogous to the Points 7 through 19 variations, with the only distinction being that they apply to the nonreheat-type steam bottoming cycle of Base Case B shown in Figure 6.3.

For Points 33 through 52, attention is again given to the reheat steam bottoming cycle, and parametric variations are performed on the gas

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

TABLE 6.2 - GAS STEAM COMBINED CYCLE Base Case A, Point 1; Base Case B, Point 2

Dug 2570202

					1.1.19	1. E. F.	2 E 14 P				- 1 <u>-</u> 14					DUREI	101.2	1997 - H
Parametric Point		2	3	4	5	6	17	8	1 9	10	11	12	13	14	15	16	17	18
Power Output, MWe													1.00					
Fuel		4.41						2 1	1.0	10.0	19 (s. 1							
Distillate		X	X	X	X		X	X	X	X	X	X	X	X	X	X	X	X
High-Btu Gas				1.11		1		1							· · · .			
Low-Btu Gas	X		in a s		1	1			1.	1	1. 1. 1		1. 1. 1. 1.		L			
Gas Turbine				l gradar					1.1.1		-				с.			1
Inlet Temp, °F	2200	2200	2200	2200	2200		2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Pressure Ratio	12	12	12	12	12	le est	12	12	12	12	12	12	12	12	12	12	12	12
Cooling (1)	a		0	0	()	Ι	0	0	0	3		(a)	0	0	a	(3)	0	a
Steam Turbine	1.1																	
Throttle Press., psig	2400	1250	1450	1450	1800	1	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400
Throttle Temp., °F ②	1000	950	1000	1000	1000	1.011	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
First Reheat Temp, °F (2)	1000			1000	1000		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Second Reheat Temp., °F (2)								1.1									10 - 1 - T	
Heat Rejection		de factor			1910	- 		5. S. S. S. S.	1			1990 - M				arris a	-	
Wet Tower	X	X	X	X	X	1 No	X	X	X	X	X	X	X			X	<u> </u>	X
Dry Tower						3	· · · · ·					-			X			<u></u>
Once Through		1.0		1.] छै					Ţ	Т		X				1.11
Supplementary Firing (level) (3)	No	No	No	No	No	1 2	No	No	No	No	NU	No	No	No	No	No	2 nd	3 rd
-Steam Generator			1. 1. 1. 1. 1. 1.			2									1.1			
Pressure Drop AP/P,%							in the second second											
Gas Side	5	5	5	5	5	1	5	5	4	6	5	5	5	5	5	5	5	5
Drum to Throttle	10	7.	7	10	10	1.12	10	10	10	10	10	10	10	10	10	10	10	10
Reheater	10			10	10		10	10	10	10	10	10	10	10	10	10	10	10
Economizer	10	7	17	10	10	1	10	10	10	10	10	10	10	10	10	10	10	10
Pinch Point Δ1, °F	1.1.1					E nu he		· · · · · ·	3 N. 1. 1 N.		1.11.1			a da estas		1. 1. A.	1.12	
Evaporator	30	30	30	30	30		15	40	30	30	30	30	30	30	30	30	30	30
Superheater	50	50	50	50	50]	50	50	50	50	50	50	50	50	50	50	50	50
Reheater	50			50	50]	50	50	50	50	50	50	50	50	50	50	50	50
Feed Water Temp., °F	250	250	250	250	250	1	250	250	250	250	220	280	250	250	250	250	250	250
Special Feat Tes	10	(4)	10	6	6	T			(()	(4)	A	10	1.1.1.1.1.1.1	TO		10	1.1.4.4	10

Notes:

① Gas Turbine Blade Cooling Configurations
③ Turbine Vanes & Blades Air Cooled
④ Vanes Ceramic, Blades Air Cooled
ⓒ Vanes Ceramic, Blades Ceramic
④ Vanes Ceramic, Blades Water Cooled

② Or as Limited by Approach Temp.

③ Supplementary Firing Level 2nd Level 1430°F 3rd Level 2410°F 4th Level 3260°F

(Steam Induction Utilizes Low Temp. Heat, 30 psia Steam Induction into LP Turbine

5 Steam Induction into Crossover Pipe

(Steam Induction into Cold Reheat Pipe and Crossover Pipe

 ${oldsymbol{D}}$ Extraction Feedwater Heating

Dwg 257C203

TABLE 6.2 - GAS STEAM COMBINED CYCLE (CONT'D.)

																Sheet	2 of 5	
Parametric Point	19	20	21	22	23	24	3	26	27	28	29	30	31	32	33	- 34	35	36
Power Output, MWe			1.1.1		1.1		1.1.1											· · · · · ·
Fuel		1.00			1.1			·										
Distillate	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
High-Btu Gas								1.				[· · · ·	1.1	11.1	$[1,\infty,\infty]$		1.5
Low-Btu Gas					11 M A.		an Se	1.1.1						1.1	1.01			
Gas Turbine		1.1			5 - 19 B.		1.	1. 1. 1.		2.1			11,000		· •	1		
Inlet Temp., °F	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	1800	1800	1800	1800
Pressure Ratio	12	12	12	12	12	12	12	12	12	12	12	12	12	12	8	12	16	20
Cooling (1)	a	a	()	()	(1)	0	0	a	(a)	a	0	()	0	a	0	0	0	۲
Steam Turbine				·					-		1.1	1.1						
Throttle Press., psig	2400	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	2400	2400	2400	2400
ihrottle Temp., °F ②	1000	950	950	950	950	950	950	950	950	950	950	950	950	950	1000	1000	1000	1000
First Reheat Temp., °F (2)	1000	1			1.	· · · · ·	1		· .			10 a. 14		. ·	1000	1000	1000	1000
Second Reheat Temp.; °F (2)							1.1.1	1.11			1.1					1. A.	1.1.1	
Heat Rejection		1.1.1	11 a.C.				2012					· .						
Wet Tower	X	X	X	X	X	X	X	X	1.1		X	X	X	X	X	X	X	X
Dry Tower	1			1. A			1.1.1	1.1	1	X		10 A.			1.00			
Once Through	1.00		1.1.1.1			1.1		1.1	X	1421 - E		1.1			1 1 1 1 1			
Supplementary Firing (level) (3)	4th	No	No.	No	No	No	No	No	No	No	NO	2 nd	311	415	No	No	No	No
Steam Generator		e e e		¥	1. 			1			- 1. I. T	· · · · · · · ·			1995 - J.C.			
Pressure Drop $\Delta P/P$, %			1.1		÷						1.1.1.1		14. J.L		1.1.1			
Gas Side	5	. 5	5	4	6	5	5	5	5	5	5	-5	5	5	5	5	5	5
Drum to Throttle	10	1 7	7	1	7	7	7	7	7	7	7	7	7.	7	10	10	10	10
Reheater	10	1	1					· · ·		11				1.1.1	10	10	10	10
Economizer	10	7	7	7	7	7	7	7	7	. 7.	7	7	7	7	10	10	10	10
Pinch Point &T, *F	1.12		1.1.1.1					5 . E		1.1.1		·	1 - S - L - L	· · ·				14
Evaporator	30	15	40	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
Superheater	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
Reheater	50	1.1.1	1.1			1.14						1			50	50	50	50
Feed Water Temp., °F	250	250	250	250	250	220	280	250	250	250	250	250	250	250	250	250	250	250
Special Features	0	(4)	(4)	(4)	(4)	(4)	(4)		(4)	(4)	0			1	(4)	(4)	(4)	(4)

Notes:

Ť

① Gas Turbine Blade Cooling Configurations
③ Turbine Vanes & Blades Air Cooled
① Vanes Ceramic, Blades Air Cooled
ⓒ Vanes Ceramic, Blades Ceramic
④ Vanes Ceramic, Blades Water Cooled

(2) Or as Limited by Approach Temp.

③ Supplementary Firing Level 2nd Level 1430°F 3rd Level 2410°F 4th Level 3260°F

④ Steam Induction Utilizes Low Temp. Heat, 30psia Steam Induction into LP Turbine

(5) Steam Induction into Crossover Pipe

(1) Extraction Feedwater Heating

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Dwg 2570204

Sheet 3 of 5

TABLE 6.2 - GAS STEAM COMBINED CYCLE (CONT'D.) Reference Case C, Point 42

			i i i							10 A 10 A	5 J. M.	<u> </u>		1.1.1				
Parametric Point	37	38	39	40	41	42	43	44	45	46	_ 47	48	49	50	51	52	53	54
Power Output, MWe					1.1							1.55						
Fuel				5 A.												- 1. Th		1.1.1.1.1.1
Distillate	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
High-Btu Gas									je servere and			1.1						
Low-Btu Gas	1				1.1.1	na seu									1.00			
Gas Turbine								•					*·			- <u></u>		
Iniet Temp., °F	2000	2000	2000	2000	2200	2200	2200	2200	2400	2400	2400	2400	2600	2600	2600	2600	1800	1800
Pressure Ratio	8	12	16	20	8	12	16	20	8	12	16	20	8	12	16	20	8	12
Cooling		0	(a)	0	(a)	0	0	0	a	(a)	(a)	0	0	0	(1)	ົ	0	O
Steam Turbine		1.1.1.1		1.1						1.00								
Throttle Press., psig	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	1250	1250
Throttle Temp. °F ②	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	950	950
First Reheat Temp, °F (2)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000		
Second Reheat Temp., °F (2)			11.00		- 1		1		1									
Heat Rejection			100		1		1											
Wet Tower	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Dry Tower			5 g 4 - 4 - 4	- C - C - C	1									1.00			1.25	
Once Through														1				1
Supplementary Firing (level)	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Steam Generator			1.11	1.00		1.11	1.65				÷							
Pressure Drop AP/P, %		- 10 A	1.000					-										
Gas Side	5	5	5	5	5	5	5	5	5	5	5	5	5	1 5	5	5	5	15
Drum to Throttle	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	7	7
Reheater	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10		
Economizer	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	7	7
Pinch Point &T, °F	1.1.1.1.1							· · ·		•					ب <u>تت</u> مم	1111		A
Evaporator	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
Superheater	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
Reheater	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50		<u> </u>
Feed Water Temp., •F	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250
Special Features	(4)	(4)	4	4	(4)			(1)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(1)

Notes:

4771

Gas Turbine Blade Cooling Configurations
Turbine Vanes & Blades Air Cooled
Vanes Ceramic, Blades Air Cooled
Vanes Ceramic, Blades Ceramic
Vanes Ceramic, Blades Water Cooled

② Or as Limited by Approach Temp.

(1) Steam Induction Utilizes Low Temp. Heat, 30 psia Steam Induction into LF Turbine

TABLE 6.2 - GAS STEAM COMBINED CYCLE (CONT' D,)

Dwg 257C205

		- 1, 4+													an An an an an an	Sheet	4 of 5	
Parametric Point	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
Power Output, MWe																		
Fuel										·			1.11.1				100	
Distillate	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X,	X	X	X
High-Btu Gas					1			<u> </u>				1.1		1.1.1.1				
Low-Btu Gas	5. g)	· .										1.1						1.1
Gas Turbine	1.	- 11 A.	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	10. C T	$(1,1,1) \in \mathbb{N}$		12.11.2	1. ¹ . 1								·	1.1.1.1	
Inlet Temp, PF	1800	1800	2000	2000	2000	2000	2200	2200	2200	2400	2400	2400	2400	2600	2600	2600	2600	2200
Pressure Ratio	16	20	8	12	16	20	8	16	20	8	16	16	20	8	12	16	20	8
Cooling ①	0	()	0	a .		0		(3)	a	0	0	0	0	0	0	0	0	D.
Steam Turbine	1000	<pre>// ***</pre>	1				1.4.5.		5 C S					1.1	1.0	1.1		
Th rottle Press., psig	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	2400
Throttle Temp, °F (2)	950	950	950	950	950	950	950	950	950	950	950	950	950	950	950	950	950	1000
First Reheat Temp, °F (2)	1.1							1										1000
Second Reheat Temp.; °F (2)							1.11									l		
Heat Rejection		- 1. A. S.	<u></u>								1.1.1							_
Wet Tower	X	X	. X.	. X	X	X	X	<u> </u>	X	X	X	X	X	X	X	<u>X</u>	X	<u> </u>
Dry Tower						1 1 1 1 1	1 .	L					·					
Once Through															1			
Supplementary Firing (level)	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Steam Generator		1. A. A.			1.1.1.1			<u> </u>									1.1.1	
Pressure Drop AP/P, %		1.1																
Gas Side	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Drum to Throttle	1	7	7	7	1	7	7	7	7	7	7	7	7	7	7	1	7	10
Reheater		1				-				1		1.1						10
Economizer	1.7	7	17	17	17	1	17	1.	1 7	7	7	17	17	1 7	7	17	1 7	1 10
Pinch Point &T, °F	1.1.1	100										1997 - 1997 -						
Evaporator	30	30	30	30	30	30	30	_ 30	30	30	30	30	30	30	30	30	30	30
Superheater	50	50	50	50	50	_50_	50	50	50	50	50	50	50	50	50	50	50	50
Reheater	1																1	50
Feed Water Temp., °F	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250
Special Features		0														(4)	(4)	10

Notes:

And Contraction

Gas Turbine Blade Cooling Configurations
Turbine Vanes & Blades Air Cooled
Vanes Ceramic, Blades Air Cooled
Vanes Ceramic, Blades Ceramic
Vanes Ceramic, Blades Water Cooled

(2) Or as Limited by Appraoch Temp.

(4) Steam Induction Utilizes Low Temp. Heat, 30 psia Steam Induction into LP Turbine

REPRODUCIENATE OF THE ORIGINAL PARE IS FOOR

Dwg. 257C206

Sheet 5 of

TABLE 6.2 - GAS STEAM COMBINED CYCLE" (CONT' D.) • Points 85, 86 and 87 were not costed

÷

Parametric Point	73	74	75	76	77	78	79	1.80	1 81	82	1 83	RA	1 85	86	8	88	80		01
Power Output MWe	12		<u>''</u>				<u> ''-</u>		+- ``								- 07	70	.71
Fuel		•		.				<u> </u>		<u>.</u>	1		ب	.	ليتمرجع	<u> </u>			
Distillate	X	X	X	X	X	X	X	1		•	· · ·	1	1.1.1	<u> </u>	1.0	<u> </u>	X	X	X
High-Btu Gas	1		1				<u> </u>	1				X				1. Start 1.	F.	1 ~~~	
Low-Btu Gas							Į	1				1	X	X	X			1.1.1.1	
Gas Turbine		1.11				1.1	S. 1.2	•											
Inlet Temp. , °F	2200	2200	2200	2200	2200	2200	2200	1		an de la	1.1	2200	2000	2400	1800	1.11.14	2200	2200	2200
Pressure Ratio	12	16	20	8	12	16	20	1				12	12	12	12	1.11	12	12	12
Cooling (1)	Ð	D	Ð	C	C	C	O	1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	14. A	0	0	(3)	a		0	0	()
Steam Turbine				1.11	9.5.25	1.1	1.19												
Throttle Press., psig	2400	2400	2400	2400	2400	2400	2400	1				2400	2400	2400	2400	1.1	2400	2400	2400
Throttle Temp., °F 🕐	1000	1000	1000	1000	1000	1000	1000	1				1000	1000	1000	1000		1000	1000	1000
First Reheat Temp, *F (2)	1000	1000	1000	1000	1000	1000	1000	1				1000	1000	1000	1000		1000	1000	1000
Second Reheat Temp.; *F (2)		1.1			1									1.1.1.1.1.1	1.11.11.11.1				
Heat Rejection			a ser en ser				16 1		Not Cal	culated				1.11.11.11.1		in the s	1		
Wet Tower	X	X	X	X	X	Х	X.	Ι				X	X	X	X		X	X	X
Dry Tower	1. S.											1.1.1	-				1.1		
Once Through	1.1.1			11 A.			1.1												
Supplementary Firing (level)	No	No	No	No	No	No	No	I		ter ya		No	NO	No	No	1.11.11	No	No	No
Steam Generator					1.1	1.00													11.1
Pressure Drop AP/P, %								1						1. ji - 14					
Gas Side	5	5	5	5	5	- 5	5	I	1917,87			5	5	5	5		5	5	5
Drum to Throttle	10	10	10	10	10	10	10	Ι	141		10.04	10	10	10	10		10	10	10
Reheater	10	10	10	10	10	10	10	I			12.15	10	10	10	10		10	10	10
Economizer	10	10	10	10	10	10	10]				10	10	10	10		10	10	10
Pinch Point & T, *F	1.11		·	1.14		N. 199		- <u>1</u>					1 H T						
Evaporator	30	30	30	30	30	30	30	T				30	30	30	30		30	30	30
Superheater	50	50	50	50	50	50	50				이가지	50	50	50	50	n de la	50	50	50
Reheater	50	50	50	50	50	50	50	Ι				50	50	50	50	1	50	50	50
Feed Water Temp., •F	250	250	250	250	250	250	250	I			5 N.	250	250	250	250	[250	250	250
Special Features			0	(4)	4	4		-				(4)		4		I ta a	8	0	

Notes:

Gas Turbine Blade Cooling Configurations
Turbine Vanes & Blades Air Cooled
Vanes Ceramic, Blades Air Cooled
Vanes Ceramic, Baldes Ceramic
Vanes Ceramic, Blades Water Cooled

④ Steam Induction Utilizes Low Temp. Heat, 30 psia Steam Induction into LP Turbine

6 Induction into the Crossover Pipe

(8) Induction into Cold Reheat Pipe
turbine parameters of turbine inlet temperature and compressor pressure ratio. For these calculations, turbine inlet temperature has been varied from 1255 to 1700°K (1800 to 2600°F), and compressor pressure ratio variations span the range of 8 through 20 to 1. Distillate fuel from coal and impingement, convection cooling for gas turbine vanes and blades are specified for these calculations. The same combinations of turbine inlet temperature, compressor pressure ratios, fuel, and cooling are investigated in Points 53 through 71 with the Base Case B-type nonreheat steam bottoming cycle.

Several calculations have been identified next for investigating the effects of variation in the type of gas turbine blade-cooling systems. These calculations have been identified for use with the reheattype steam bottoming cycle and assume the coal-derived distillate as fuel. Points 72 through 75 are calculated at a gas turbine inlet temperature 1478°K (2200°F) with compressor pressure ratios varying from 8 through 20. For these calculations, ceramic vanes and air-cooled rotor blades are assumed. Points 76 through 79 are identical, with the exception that both ceramic vanes and ceramic rotating blades are specified. The combination of ceramic vanes and water-cooled blades, originally identified for Points 80 through 83, were not calculated. Coal-derived high-Btu gas has been substituted for the liquid coal-derived distillate as the fuel in Point 84.

Points 85 through 88 were originally specified for a parametric investigation of integrated low-Btu gasification cycles, with variations in both gas turbine compressor pressure ratio and turbine inlet temperature. These cases were later simplified, and the calculations of efficiency only were performed by modifying Base Case A solely to reflect the effect of alternative turbine inlet temperatures of 1255, 1366, and 1589°K (1800, 2000, and 2400°F).

Variations in the use of steam induction were investigated in Points 89, 90, and 91. These studies were based on the general cycle arrangement shown in Figure 6.4. A single steam induction was utilized

6-28

RIERODUCES E CENTRE

ORKINATI PARTI IS POCR

at the steam turbine reheat point for Point 89, while Point 90 utilized a single steam induction at the crossover line between the intermediatepressure (IP) and low-pressure (LP) steam turbine elements. Point 91 utilizes neither of these steam inductions.

6.4.1 Selected Case Results

A summary of calculated performance data for Base Case A is presented as Figure 6.6, where the data point station numbers refer to the cycle schematic (Figure 6.2) which is repeated here for the convenience of the reader. The overall efficiency (coal to bus bar) for this plant has been calculated to be well in excess of 40%, including the gasification process. A turbine inlet temperature of 1478°K (2200°F) and a compressor pressure ratio of 12 to 1 were used in the calculation, and the fuel was Illinois No. 6 bituminous coal.

Figure 6.7 summarizes the calculated cycle data and plant performance for Base Case B, as defined in Point 2. As in Base Case A, this plant utilizes gas turbine parameters of a 1478°K (2200°F) turbine inlet temperature and a compressor pressure ratio of 12 to 1. This plant, however, is fired with coal-derived distillate fuel. The calculated thermodynamic efficiency for the Base Case B power plant is greater than 45%.

The Reference Case C (Point 42) plant arrangement is, with the exception of the substitution of coal-derived distillate fuel for the gasification process, the same as Base Case A. Summary thermodynamic results for this case are given on Figure 6.8.

Special studies were made of the effect of steam turbine induction on the overall plant performance. A representative example of this analysis is given by Point 16 which incorporates steam induction at both the steam turbine reheat and crossover points. Summary cycle calculation results are given on Figure 6.9. The calculated thermodynamic efficiency for this case is approximately 48%.

6-30

A.S. 3

Dug. 2570563

Ì

Fig 6.7-Base Case B cycle data summary (Point 2)

0 108 Superheater 0 Boiler Feed Pump 109

. بيد

Dvg. 2570565

1

0 0 $\overline{\mathbf{z}}_{\mathbf{z}}$ Fuel 1٩ (F HPT IPT LPT LPT Makeup Water Storage Tank is Turbine Generato Generator From @ Demineralizer Condenser

8 Steam Generat

ae(

C

0 Evaporate Ê

(5)

38

Reheater

1.

Ċ

Station Pressure, psia Temperature, °F Enthalpy, Btu/Ib Flow, Ib/s Gas Turbine and HRSG 14. 696 1 59 963, 40 21, 30 23 2200 1042 832 705 489 290 165.4 281.7 225,0 191.2 135.8 85.7 4 984.70 -5 6 7 8 14. 696 Steam Cycle 101 102 103 104 105 106 107 108 109 110 111 2 in Hg Abs 130, 70 51, 30 36, 10 104, 10 101 69.1 30 30 2900 2610 250 250 733, 5 1079, 0 1458, 2 1312, 8 1515, 4 670 675 992 630 992 94, 60 2350 556 500 94.60 94.60 Fig. 6.8-Reference Case C cycle data summary (Point 42)

> REPRODUCITILITY OF THE ORIGINAL FACE IS POOR

Deserator Evaporato LP Feed Water Heaters @ Condensate Pump Q @ D LP Economizer • LP Feed Pump 10 Ð 10 1 D LP Evaçorator IP HP LP Generator () IP Ecoñomizer (B) IP Evaporato 0 HP Feed Pump HP Economizer Ø IP Superhéater ወ 0 000 B מחר Fuel (6) HT Evaporator 0 3 1 0 0 (S) Reheater Generator UUU High Press Superheater Ai Ō ≍ ſ Fuel

Į.

-

The transmission

ŕ

A

a hote

8

Deg. 8509D88

REACTION OF A THE

6-33

\$

Se to

6.4.2 Results of Parametric Variations

Figure 6.10 displays the results of turbine inlet temperature and compressor pressure ratio variation on the basic reheat steam cycle, Reference Case C. Curves of plant efficiency versus specific power are plotted at constant inlet temperature. These results show the general improvement in performance with increasing the turbine inlet temperature and, further, that the optimum (maximum efficiency) pressure ratio is a gradually increasing function of inlet temperature. At 1255°K (1800°F), a peak efficiency of approximately 41.6% was obtained, while a peak efficiency of about 49.6% occurs at 1700°K (2600°F).

Also shown in Figure 6.10 are the plant efficiency results corresponding to the gasification combined-cycle Base Case A and three additional integrated low-Btu gasification plants calculated for gas turbine inlet temperatures of 1589, 1366, and 1255°K (2400, 2000, and 1800°F) at a compressor pressure ratio of 12 to 1. Comparing the gasification combined-cycle results of Base Case A with the distillate fuelburning Reference Case C indicates that although the combined plant efficiency is decreased by approximately 5% in going from distillate fuel to coal gasification, the combined plant specific power is increased by approximately 4.5%.

Several steam system parameter variation results are reported in Figure 6.11. Again, all variations are referred to Reference Case C. The percent changes in efficiency and power associated with each variation have been displayed in Figure 6.12. One of the most powerful single effects on efficiency is the use of steam turbine induction. (Reference Case C utilized a single steam induction into the low-pressure turbine. Other more specialized induction studies are described elsewhere in this section.) Other significant improvements in thermodynamic efficiency are obtained by using reduced evaporator pinch temperature difference, increased feedwater temperature, and reduced steam turbine condenser pressure.

1 --Evaporator Pinch = 15°F 2-Evaporator Pinch = 40°F 3- Boiler Exhaust Press. Drop = 4% 4- Boiler Exhaust Press. Drop = 6% 5- FW Temperature = 220°F 6- FW Temperature = 280°F 7- Orait Induction 8- Condenser Pressure = 1.5 in Hg Abs 9- Condenser Pressure = 3.5 in Hg Abs 10- Condenser Pressure = 9 in Hg Abs 11- High-Btu Gas Fuel

6-36

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Ţ

j,

1000

ORIGINAL PAGE IS FOOR

Special attention was given the subject of the effect of steam turbine exhaust pressure on overall power plant performance. The curves in Figure 6.13 summarize the results of varying this quantity from its nominal value as used in the Reference Case C configuration. In going from the nominal 6.77 kPa (2 in Hg) abs back pressure associated with the use of wet cooling towers to the 5.08 kPa (1.5 in Hg) abs value, achievable using once-through cooling, the combined plant heat rate and specific power are improved by approximately 0.6% each.

The use of ceramic gas turbine vanes and blades has been investigated as a means of improving combined-cycle performance as a consequence of the minimization of cooling air expenditure. Two levels of implementation have been considered: the use of ceramic stationary vanes in conjunction with air-cooled rotating blades, and the use of both ceramic stationary vanes and ceramic rotating blades. The results of the study are shown in Figure 6.14. In comparison with Reference Case C, the parametric point using both ceramic vanes and ceramic blades at a compressor pressure ratio of 12 to 1 showed an improvement of nearly 6% in heat rate and an increase of nearly 19% in combined plant output.

The results shown on Figures 6.15 through 6.17 are based on variations of the nonreheat steam cycle, Base Case B (Point 2). They compare directly with the parametric variations reported in Figures 6.10 through 6.12 described above, which were based on the reheat steam cycle Reference Case C.

Direct comparisons between the results of calculations with reheat bottoming cycles and nonreheat bottoming cycles are presented in Figures 6.18 and 6.19. The first comparison at 1478°K (2200°F) shows the reheat cycle with superior efficiency for compressor pressures of 8 to 16 and the nonreheat cycle efficiency slightly higher for higher pressure ratios. Figure 6.19 shows the reheat steam cycle to have a higher efficiency over the entire compressor pressure ratio range investigated at a turbine inlet temperature of 1700°K (2600°F).

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Fig. 6.14-Effect of gas turbine blading material on plant performance

.

1

ŧ

-

- sa - and

1000

* *

6-41 ()

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Curve 682760-8

14

6-42

REPRODUCIBLITY OF THE ORIGINAL PAGE IS POOR

6-44

6-45

Fig. 6. 19 - Effect of reheat steam cycle on plant performance

.....

1

æ r

لنزك

 $\langle 0 \rangle$

1

6-46

The parametric cycle study work described heretofore was performed in accordance with the base case cycle schematic models given in Figures 6.2, 6.3, and 6.5. These cycles incorporate the induction of steam at low pressures into the steam turbine LP element, and they incorporate both reheat and nonreheat steam turbine bottoming cycles. The special studies performed to consider the application of supplementary fired steam boilers, alternative steam pressure levels, and additional variations on the use of steam induction were based on the generalized cycle model shown in Figure 6.4. One of the principal objectives of incorporating steam induction was to improve the thermodynamic fit between the gas turbine exhaust heat rejection line and the steam cycle heat acceptance line. (The concept of thermodynamic fit is discussed more fully in Section 7 of this report.) Figure 6.20 displays the fit resulting from the analysis of Point 16, which incorporates steam induction at both the reheat and crossover points. The efficiency for this cycle, as compared to the others incorporating no inductions, and one or two inductions at various steam cycle throttle conditions is illustrated in Figure 6.21. For the general arrangement of Point 16 [16.547 MPa/811°K/811°K (2400 psig/ 1000°F/1000°F) Unfired Boiler], power plant efficiency can be increased from approximately 45% to nearly 48% by adding two steam inductions.

6.5 Capital and Installation Cost of Plant Components

1940

6.5.1 Description of Base Case Power Plants

Development of plant capital costs for the gas-steam combined cycle concept was based upon detailed examination of the base case plants with appropriate variations for the remaining parametric points.

Base Case A consists of an integrated low-Btu gasification combined-cycle plant with four gas turbines whose waste heat is used to generate steam for a single reheat steam turbine. The Base Case B arrangement is made up of two distillate fuel-fired gas turbines exhausting into waste heat recovery boilers, whose output is used to drive a single nonreheat steam turbine.

1111 -

87-9

Cycle Efficiency, %

Fig. 6.21 – Combined cycle efficiencies

The plant island arrangement for Base Case A is illustrated in Figure 6.22. The overall site arrangement is shown in Figure 6.23. Four nominal 130 MWe gas turbines individually exhaust into unfired heat recovery steam generators which provide steam for a nominal 16.547 MPa/ 811°K/811°K (2400 psig/1000°F/1000°F) steam turbine. The gas turbines receive fuel gas from a pressurized fluid bed gasification system utilizing in-bed fuel gas desulfurization.

Figure 6.24 illustrates the gas turbine concept design selected for the Base Case A application. The single-shaft design passes 440 kg/s (970 lb/s) at 60 rps (3600 rpm). A multiple-can burner system capable of firing either low-Btu gas fuel or liquid distillate-type fuel is included in this design. The three-stage turbine uses conventional metal blading with vanes and blades cooled by impingement, convection, and film-cooling techniques using air as the coolant medium. Two tilting pad film-type journal bearings support the shaft, with thrust loads taken up by a tilting pad segmented thrust bearing at the compressor end of the shaft. The generator drive is at the cold compressor end of the shaft, which facilitates the use of a low-loss axial-flow turbine exhaust diffuser and the positioning of in-line heat recovery equipment. The casing features horizontal joint construction for easy access, and can be shipped by rail fully assembled. The exciter and hydrogen-cooled generator are directly coupled to the gas turbine shaft. The starting package, which is electrically operated, drives through the exciter and generator shafting to provide rotation and acceleration to self-sustaining speed. Cas turbine auxiliary support services are provided by individual skid-mounted assemblies, shown in place on Figure 6.22. The mechanical skid assembly includes lubricating oil pumps, filters, and reservoir; an air system pressure switch and gauge cabinet; and seal oil system. Included in the electrical and control skid is the battery equipment, motor control center, voltage regulator, generator relay panel, and certain control equipment. The fuel skid includes fuel pumps, filters, and related equipment.

Fig. 6. 22-Combined-cycle power plant island - Base Case A

+

.

1

e e

6-51

3

Chine.

1

ζ,

6-52

The integrated low-Btu gasification plant included in the Base Case A arrangement is patterned after the Westinghouse Advanced Fluidized Bed Gasification process being developed under contract to ERDA. The gasification plant consists of two major elements: the coal and dolomite preparation subsystem and the gasification subsystem. The coal and dolomite preparation equipment is sized so that one subsystem has the capacity to service two gasification subsystems. Each gasification system in turn has the capacity to serve one gas turbine. Coal and dolomite crushing, drying, and silo storing are performed within the coal and dolomite preparation system.

The gasification process, shown schematically in Figure 6.25, operates with two distinct fluidized bed stages—a devolatilization/ desulfurization and a gasification/combustion stage. Dry coal is fed to the first stage, where it is devolatilized and converted to char by hot fuel gas from the second stage, the gasifier combustor. In the devolatilizer/desulfurizer, the fuel gas is enriched by the volatile products of the coal and is also desulfurized by dolomite added to the bed. Dolomite is continuously withdrawn and delivered to the spent sorbent oxidizer, where waste heat is recovered. Char from the devolatilizer/ desulfurizer is fed continuously to the gasifier/combustor, together with air and steam which react with carbon to produce the hot fuel gas. A second function of the gasifier/combustor is to remove the ash. This is accomplished by regulating the temperature in the combustion zone so that ash particles partially melt and agglomerate to form larger particles which drop out of the fluidized bed. Fuel gas is passed through a particulate separator system and delivered at 1144°K (1600°F) to the gas turbine fuel gas manifold.

Both Base Cases A and B utilize a modular design heat recovery steam generator similar in design to that shown in Figure 6.26. Tube modules, shippable as fully assembled packages, are positioned in each of the parallel gas paths. As the heat recovery steam generators are able to operate for modest periods in a dry and vented mode, gas turbine bypass

Fig. 6.25-Westinghouse multi-stage fluidized-bed process for the total gasification of coal with desulfurization for an electric power plant

6-54

Modularized Construction

1.

Heat Recovery Steam Generator

Fig. 6.26—Sectional view of PACE 260 heat recovery steam generator showing heat recovery steam generator modularized construction

Q

1

Fig. 6. 27 – Vertical steam drum and moisture separator

1 2 3

stacks are not required. The vertical steam drum is shown in Figure 6.27. It utilizes two stages of steam-water separation, a primary centrifugal stage, and a secondary chevron stage. Feedwater heating is accomplished by means of a deaerating feedwater heating system.

The steam turbine is made up of currently available basic components with special modifications to accommodate steam induction. The steam turbine generator is of hydrogen-cooled design featuring a brushless excitation system. The steam turbine condenser is located beneath the LP element and is typical of modern steam station design practice.

The Base Case B power plant island is illustrated by Figure 6.28, and the overall site arrangement is given in Figure 6.29. The design consists of two nominal 130 MW gas turbines of the same design as those considered for Base Case A. The gas turbine exhaust heat is recovered by means of unfired heat recovery steam generators which provide steam for a nominal 8.618 MPa/783°K (1250 psig/950°F) nonreheat steam turbine generator. The gas turbines are fueled by distillate derived from coal.

6.5.2 Approximate Sizes and Weight of Major Components

There are four major components utilized in the combined-cycle energy conversion systems:

- Gas turbine engine
- Heat recovery steam generator
- Steam turbine generator
- Gasification system.

For each base case, the relative plan view sizes of these components is indicated by the plant island arrangements, Figures 6.22 and 6.28. The concept design gas turbine engine is common to both base cases; a crosssectional view for this major component has been provided in Figure 6.24. Outline views of the Base Cases A and B heat recovery steam generators are shown without steam drums and the interconnecting piping in Figures 6.30

Fig. 6.28-Plant arrangement combined cycle gas-steam turbine - Base Case B

н.

· interspecture

6-59

Fig. 6. 30-Heat recovery steam generator outline (Base Case B)

and 6.31 illustrates the modular nature of construction utilized for these units. The sizes and masses of the first three major components are listed in Table 6.3.

6.5.3 Price Determination Procedure

For the purpose of establishing power plant cost estimates for parametric analysis, equipment prices were estimated for each of the four major plant components described above. The pricing procedure used for the gas turbine portion of the plant has already been described in Section 5.5.

The pricing of heat recovery steam generators was first approached by developing a number of concept designs. These designs, including the Base Cases A and B models, were formulated by the Westinghouse Heat Transfer Division, using computerized design approaches evolved in the design and development of the PACE combined-cycle modular heat recovery steam generators. The designs were developed sufficiently to determine heat exchange surface requirements, module arrangements and weights, and approximate outline dimensions. Equipment and installation prices were developed for each concept design. The price results were then segregated into price of heat exchanger surface, balance of heat recovery steam generator, and erection price. Heat exchange surface prices were correlated against heat transfer duty, Q/LMTD, and prices for balance of heat recovery steam generator and erection were correlated against steam flow. These price relationships, with suitable modifications for supplementary firing and steam induction, were utilized to determine prices for each parametric point.

The steam turbines were priced from Westinghouse published price lists, using current market level multipliers. The published lists arrive at a price based on the exhaust end size and configuration, power output, generator capacity, steam pressure and temperature, and the scope and extent of features and accessories.

Gasification system description and pricing information are described in Section 4 of this report.

Component	Basic Dimensions, m (ft)			Mass, kg (1b)
Gas Turbine	Length	Diameter		
Turbine section	3.6 (11.7)	4.1 (13.3)		59,000 (130,000)
Compressor section ^a	7.4 (24.2)	3.4 (11.3)		72,500 (160,000)
Heat Recovery Steam Generator	Length	Width	Height	
Base Case A	33.2 (109)	11.9 (39)	16.0 (52.4)	1,200,000 (2,640,000) ^b
Base Case B	31.1 (102)	11.9 (39)	14.6 (47.9)	810,000 (1,782,000)
Steam Turbine-Generator	Length	Diameter		
Overall with generator				
Base Case A	26.2 (86)	5.2 (17)		570,000 (1,250,000)
Base Case B ^c	8.5 (28)	4.0 (13)		109,000 (240,000)

Table 6.3 - Approximate Size and Mass of Base Case Combined-Cycle Major Components

^aIncludes combustion section.

^bDoes not include drums and interconnecting piping.

^CDoes not include generator.

Fig. 6.31 -Heat recovery steam generator outline (Base Case A)
Table 6.4 COMBINED BAS-STEAM TURBINE CYCLE PERC PLANT FOW OPERATION COST MAINTENANCE CCST 12.02576 25.55056 7.70351 10.71608 824.09284 - .00000 ACCOUNT NO AUX POWER MWE 4.77110 4.24930 3.59743 .00000 25.55055 824.09284 2.59304 45.35389 .00000 21.92144 .00000 2 .00000 14 5.72350 12 14.45117 .00000 .00000
 18
 5.75360
 14.45117

 2C
 16.22420
 40.02275

 TDTALS
 39.27563
 5.02775

 NOMINAL POWER, MWE
 323.2000
 92

 NOM HEAT RATE, BTU/K%-HR
 7672.5494
 NET

 ST TURB HEAT RATE STANSE
 .9853
 .9853
 5.10167 000000 903.99199 7.72351 TASE CASE INPUT VET POWER NWE NET HEAT RATE, STU/KW-HR 783.5243 CONDENSER DESIGN PRESSURE, IN 13 A NUMBER OF TUBES/SHELL U, BTU/HR-FT2+F 2.0000 5072.6807 591.4577 NUMBER OF SHELLS TUBE LENGTH. FT TERMINAL TEMP DIFF. F 2.0000 HEAT REJECTION DESIGN TEMP, = RANGE, F OFF DESIGN PRES, IN 43 4 51.4030 AP2ROACH. F OFF DESIGN TEMP. F LP TURBINE BLADE LEN. IN 21-6744 23.0600 77.0000 2.9678 25.0000 1 .005 .000 5 2 132.460 3 .445 -4 57.433 1.606 1.333 2.930 9 438100033.003 Э 2.000 10 1.000 7 2.933 .FGC 129.325 12706.C50 .F95 200.000 .350.000 440000.F00 .350 .350 .350 1.300 5.350 10003J007 1000 3000 10330000 000 10300 1000 1000 1000 000 15 205 305 35 40 11 12 14 4.000 1250.000 4350000.000 1.000 250000.000 1.000 1.000 194233 2.000 1515335 17 22 27 .00C 3510000.000 1653000-033 32 644030.000 150000.000 154000-0rc 1-033 44 45 50 41 45 51 42 3.000 48 52 -000 7 ¢¹ 1.007 120£800,000 1.000 1.000 3 1.000 5 - 34 S 1.000 10 1.000 3 1.000 .050 2691280.000 .350 .300 1494949 15 20 25 30 35 12 .050 11 395530.000 2541903.000 1458400.000 .140 571300.000 .050 2022033.000 16 21 2F 27 27 32 37 .03C .140 1.000 539900.000 .000 .000 .000 .000 6050000.000 252600.000 31 36 .140 130 -000 -000 40 .000 .000 41 46 44 45 50 .000 42 .300 43 .000 220.000 1500.000 47 200.000 48 .000 45 4.000 1.000

6-64

4.000

-450 -450

.000

1.000

.100

.000

.000

Steam condenser and power transformer prices have been based upon appropriate published price lists.

The balance of plant pricing has been handled by the architect and engineering firm, Chas. T. Main, Inc., and details of the methods used are described in Section 2 of this report.

6.5.4 Tabulation of Overall Plant Material and Installation Costs

With the exception of heat rejection equipment (steam turbine condensers and cooling towers), the prices of materials and installation were determined, tabulated, and entered into the cost of electricity (COE) calculation computer program. Condenser and cooling tower prices were calculated by means of price correlations preprogrammed into the COE program. Input for both condenser and cooling tower calculations, as well as major equipment cost input for Base Case A, are given in Table 6.4. (Due to an error regarding power for Base Case A the net output and net heat rate shown in Table 6.4 and subsequent tables are incorrect. Corrected values have been used for plotting result curves.) The corresponding output material and installation costs for Base Case A are listed in Table 6.5. This tabulation for each account code item gives the unit measure, amount, material and installation cost per unit, and total material and installation costs.

Similar input and output cost tabulations are given for Base Case B in Tables 6.6 and 6.7.

Material and installation costs for the remaining combined-cycle parametric points have been summarized on Table 6.8. Under the heading "Total Major Component Cost" are included the total direct material costs for the major components (gas turbine auxiliaries, gas turbine generator, steam turbine-generator, and heat recovery steam generator). These and additional cost items for each parametric point are then presented on a \$/kW basis. Included are: total direct major component material costs, balance of pl nt direct material cost, site-labor, indirect costs, professional services and ownership, contingency and escalation, and interest during construction costs.

Table 6.5	COMBINED	345-STEAM TUR PARAMETRIC P	BINE CYCLE Dint NG. 1	ACCOUNT LIS	TING	
ACCOUNT NO. 8	NAME. UN	IIT AMOUNT	MAT S/UNIT	INS \$/UNIT	MAT COST.S	INS COST.S
SITE DEVELOPMEN 1. 1 LAND COST 1. 2 CLEARING 1. 3 GRADING L 1. 4 ACCESS RA 1. 5 LOOP RAIL 1. 5 SIDING R 1. 7 OTHER SIT PERCENT TOTAL	T AND A LAND A ILAND A ILAND M ROAD TRACK M R TRACK M E COSTS A JIRECT COST	ACRE 129.6 CRE 43.0 ACRE 129.6 ILE 5.0 ILE 2.6 ILE 2.6 ILE 0 ICRE 0 IN ACCOUNT 1	10C0.C0 .09 .00 115070.90 12000.00 125000.00 125000.00 .CC 1.159 ACC0J	.DC 530.00 7000.00 110000.00 70000.00 80000.00 80000.00 .00 NT TOTAL +3	129000.00 00 575900.09 240000.00 284097.09 284697.92 1228697.91	.CC 25797.42 387000.00 550000.00 14CC00.00 284697.92 1397495.31
EXCAVATION & PI 2. 1 COMMON EX 2. 2 PILING PERCENT TOTAL	LINS CAVATION Direct Cost	YD3 3810C.C FT 191603.0 IN ACCOUNT 2	.CC 6.53 -726 ACCOU	3.00 8.50 NT TCTAL+5		11436C.CC 963600.D0 37796C.CC
PLANT ISLAND CO 3. 1 PLANT IS. 3. 2 SPECIAL S PERCENT TOTAL	NCRETE CONCRETE TRUCTURES DIRECT COST	YD3 12703.9 YD3 0 IN ACCOUNT 3	70,09 .00 .344 ACCOU	00.00 00 \$101 Total \$	889000-00 00 889000-00	1015000.00 .00 1015000.00
4EAT REJECTION 4. 1 COOLING T 4. 2 CIRCULATI 4. 3 SURFACE C PERCENT TOTAL	SISTEM OWERS E Ng H2D Sys E Ondenser Direct Cost	ACH 2.0 ACH 1.0 FT2 215702.2 IN ACCOUNT 4	00. 00. 00. 1.994 Accou	00. •D5 •00. •Total•\$	1381500.00 547615.03 1002961.72 2932075.75	68350C.0C 734282.55 143991.51 1566774.05
STRUCTURAL FEAT 5. 1 STAT. STR 5. 2 SILOS & 3 5. 3 CHIMNEY 5. 4 STRUCTURA PERCENT TOTAL	URES UCTURAL ST. UNKERS L FEATURES E DIRECT COST	TON 125C.B TPH .0 FT .0 ACH 1.0 IN ACCOUNT 5	650.00 1800.00 544000.00 - 811 ACCOU	175.00 750.00 00 154009.09 NT TCTAL+\$	812500.CC .00 .00 .00 .00 .00 .00 1455500.00	21675C.CC .00 .CC 154000.00 37275C.CC
BUILDINGS 5. 1 STATION 3 5. 2 ADMINSTRA 5. 3 WAREHOUSE PERCENT TOTAL	UILDINGS TION & Stop DIRECT COST	FT3 3510000.0 FT2 5000.0 FT2 1000.0 IN ACCOUNT 6	.15 16.00 12.00 .586 ACCOU	14.00 8.00 NT TCTAL+\$	551603.09 •C0 120009.00 681600.00	561600.00 •CG 93000.00 641600.00
FUEL HANDLING & 7. 1 COAL HAND 7. 2 DOLOMITE 7. 3 FUEL OIL PERCENT TOTAL	STORAGE LIN3 SYS HAND• SYS HAND• SYS DIRECT COST	TPH 291.1 TPH 154.0 3AL 4359009.0 IN Account 7	.00 .00 .90 = 3.979 Accou	-03 -00 -99 NT TCTAL+\$	4205527.25 1421693.75 441488.59 6068809.69	1977342.54 688604.93 344024.12 2309971.65
FUÈL PROCESSING 8. 1 COAL DRYEI 8. 2 CARBONIZE 8. 3 GASIFIERS PERCENT TOTAL	R & CRUSHER RS Direct cost	TP4 0 TPH 0 TP4 291.1 IN ACCOUNT 8	.00 .00 .90 =35.157 ACCOU	•00 •00 •00 NT TCTAL•\$	•00 •00 \$3770876•00 50770876•00	•60 •66 29553517•75 28558617•75

-

6-66

REPRODUCIENTITY OF THE ORIGINAL ZAGE IS POOP

> °₹ Ç

â

.

. 1

COMBINED GAS-STEAM TURBINE CYCLE PARAMETRIC POINT NG. 1 ACCOUNT LISTING Table 6.5 Continued ACCOUNT NO. & NAMES UNIT AMOUNT MAT \$/UNIT INS \$/UNIT MAT COST. \$ INS COST. \$ FIPING SYSTEM 9. 1 PERCENT TOTAL DIRECT COST IN ACCOUNT 9 = .330 ACCOUNT TOTAL. .00 .OC •CE .00 00 VAPOR GENERATOR (FIRED) .00 .00 .00 .00 SHERGY CONVERTER

 ENERGY CONVERTIR

 11. 1 GAS TURL COMP SECT
 EA
 4.0 1106800.00 60 19825.00

 11. 2 GAS TUR3 COM3 SITE
 EA
 4.0 795500.90 19825.00

 11. 3 CAS TUR3 COM3 SITE
 EA
 4.0 2541900.00 127095.00

 11. 4 GAS TUR3 ENS AUX
 EA
 4.0 2141900.00 127095.00

 11. 5 CAS TURE ENERATOS
 EA
 4.0 2451200.00 1225375.00

 11. 5 GAS TURE CONFRATOS
 EA
 4.0 2451200.00 122160.00

 11. 5 GAS TURE CONFRATOS
 EA
 4.0 121500.00 122160.00

 11. 5 GAS TURE ENERATOS
 EA
 4.0 121500.00 122160.00

 11. 5 GAS TURE ENERATOS
 EA
 4.0 121500.00 122160.00

 11. 5 GAS TURE ENERATOS
 EA
 4.0 121500.00 122160.00

 11. 5 GAS TURE ENERATOS
 EA
 4.0 121500.00 122160.00

 11. 7 CAS TURE ENE MISC
 EA
 4.0 171800.00 235130.00

 11. 8 STEAM TURJINI-SINIR
 EA
 1.0 1074526.37

 9 PERCENT TOTAL DIRECT COST IN ACCOUNT 11 =24.708 ACCOUNT TOTAL SEC
 1.0 1074526.37

 66340.00 4827200.00 19825.00 1536000.00 127095.00 10167600.00 205576.00 5973600.00 241360.00 79300.00 566380.00 322304.00 242208.00 10764800.00 968831.99 122160.00 235130.00 936578.39 4836400.00 2637200.00 10074525.37 482540.00 940520.00 835572.39 50867326-00 4885914 31 COUPLING HEAT EXCHANGER 12. 1 HEAT RED JTEAM BEN EA 4.0 6750000.00 1315000.00 24200000.00 7250000.00 PERCENT TOTAL DIRECT COST IN ACCOUNT 12 =13.342 ACCOUNT TOTAL.5 24200000.00 7260000.00 HEAT RECOVERY HEAT EXCU. .00 13. 1 .3. 1 PERCENT TOTAL DIRECT COST IN ACCOUNT 13 = .ECO ACCOUNT TOTAL.S 00. WATER TREATMENT 14. 1 DEKINERALIZER SPM 502.1 2000.00 560.00 14. 2 CONDENSATE POLISHING KWE 00 1.25 .30 PERCENT TOTAL DIRECT COST IN ACCOUNT 14 = .683 ACCOUNT IOTAL. 560.03 1204235.09 337177.43 1204295.39 337177.43 POWER CONDITIONING 15. 1 STD TRANSFORMER KVA 1000133.3 .00 .00 3860721.22 PERCENT TOTAL DIRECT COST IN ACCOUNT 15 = 1.745 ACCOUNT TOTAL. 3860721.22 77214.42

 AUXILIARY MECH EQUIPMENT

 16. 1 BOILER FEED PUMP & DR.KWE
 265954.7
 .55
 .04

 15. 2 OTHER PUMPS
 KWE
 355431.2
 .32
 .12

 16. 3 MISC SERVICE SYS
 KWE
 52785.1
 1.17
 .73

 16. 4 AUXILIARY BOILER
 PPH
 .0
 .00
 .80

 PERCENT TOTAL DIRECT COST IN ACCOUNT 16
 .676 ACCOUNT TOTAL'S

 .04 146275.07 321579.46 617578.73 10638.19 •12 •73 43851.74 385326.96 1085433.25 . 50 .00 439818.83 PIPE & FITTINES 17. 1 CONVENTIONAL PIPING TON 800.0 3000.00 1800.00 17. 2 HOT EAS PIPING FT 220.0 1500.00 PERCINT TOTAL DIRECT COST IN ACCOUNT 17 = 1.858 ACCOUNT TOTAL.\$ 1800.00 2400000.00 1440000.00 200.00 330000.00 44000.00 2730000.00 1484000.00

10-00

Ŷ

ġ

1.

Table 6.5 COMBINET GAS-STEAM TURBINE CYCLE ACCOUNT LISTING PARAMETRIC POINT NO. 1 Continued ACCOUNT NO. & NAME. UNIT AMOUNT MAT SJUNIT INS SJUNIT MAT COST.S INS COST.S AUXILIARY FLEC EQUIPMENT

 13.1
 MISC MOTERS, ETC
 355431.2
 1.40
 17

 18.2
 SWITCHEEAR & MCC PAN KWE
 365431.2
 1.55
 45

 18.3
 CONDUIT, CABLES, TRAYS
 T
 165000.0
 1.32
 1.36

 18.4
 ISOL AFED PHASE BUS
 FI
 36500.0
 1.32
 1.36

 18.5
 LISHTINS & COMMUN
 KWE
 312059.4
 .35
 .43

 PERCENT TOTAL DIRECT COST IN ACCOUNT 18
 3.924
 ACCOUNT TCTAL, \$

 •17 •45 1•35 450•00 511503.53 2872190.84 2177999.97 62123.30 164444.C4 2243995.97 16200.00 183600.00 294224.27 6029618.75 .43 349189.82 2981757.12 CONTROL, INSTRUMENTATION 13. 1 COMPUTER EACH 1.0 440009.00 1000.00 19. 2 CTHER CONTROLS EACH 1.C 75000.00 15000.00 PERCENT TOTAL DIRECT COST IN ACCOUNT 19 = .324 ACCOUNT TOTAL.5 1450460.39 10006.00 160000.00 1700400.00

 PROCEDS WASTE SYSTEMS
 .C
 <t 443913.72 977451.12 4294664.25 8511140.12 5712929 .06 STACK GAS CLEANING21. 1 PRECIPITATOREACH.03765474.913747553.5321. 2 SCRUELERKWE.02%.8111.3821. 3 MISC STEEL 3 JUCTS.0.00.00PERCENT TOTAL DIRECT COST IN ACCOUNT 21.00 ACCOUNT TOTAL.5 .00 .00 .00 .66 • 80 • 00 .00 -GC

TOTAL DIRECT COSTS.S

6-68

164376800.00 €0769916.00

• • • • • • • • • •

COMEINED CAS-STEAM TUREINE CYCLE Table 6.6 ACCOUNT NO AUX POWER. MWE PERC PLANT POW OPERATION COST MAINTENANCE COST 2.66342 4 49.116 11 14.90890 4-25646 1.61775 14 .00000 .00000 .00000 00000 18 50.88318 TOTALS 15.52566 5.42252 1.40739 4.25646 PASE CASE INPUT VET POWER, MWE NET HEAT RATE, ETU/KW-HR COMBINED GAS-STEAM TURBINE CYCLE NOMIVAL POWER, MWE 390.3030 NOM HEAT RATE, BTU/KW-HP 7336.0919 390.3010 7336.0919 395.3774 7435.3174 ST TURB HEAT RATE CHANGE CONDENSER .9354 CONDENSER DESIGN PRESSURE, IN 43 A NUMBER OF TUBES/SHELL U, BTU/HR-FT2-F HEAT REJECTION DESIGN TEMP, F RANGE, F OFF DESIGN PRES, IN 43 A TUMBER OF SHELLS TUBE LENGTH, FT TERMINAL TEMP DIFF, F 2.0000 5675.5355 1.0000 77.4467 5.0000 591.4577 APPRJACH. F DFF DESIGN TEMP. F _P TURBINE BLADE LEN. IN 51.4030 23.0000 21.5744 77.6000 2.8718 25.0000 1 128-300 2 .000 3 .465 4 -0CC 5 456600000.000 1.000 3.000 1.000 10 5 57.133 7 2.000 3 3 .000 59.003 6600.000 2509.000 11 1.000 12 13 14 1521 17 22 27 32 19 23 1.000 19 24 29 39 5.000 20 1-000 700.00n 25 .000 28 2210000.000 5022.000 7250000.000 30 .500 1.920 60080.002 ·80U 300.000 35 670000.000 38 4 E 37 300.000 1.000 322000.000 41 45 51 77000.000 42 .000. 44 45 36000.000 .000 -000 -000 5-350 1-200 1-260 -050 2528700-000 .000 47 43 3,000 49 4 52 2 1.000 50 .00C 1.000 1.000 1 ~3 1.000 5 6 7 3 9 1206800.000 10 11 16 21 2F 31 36

e testes teste automaticado or

6-69

41 46

Sec.

3.000

1.000

.000

.000

.000

.500

6.000

.500

1.000

.C50

.000

.000

1.000

1.000 12 13 2475433.000 15025050 .050 14 1388530.000 17 227 32 37 18 23 28 33 38 •140 333509•000 .090 .100 19494949 350 360 020 2550000.000 .030 140 000 000 4570000.000 500400.000 246200.000 •140 •000 .000 .000. .000 43 .000 .022 42 .000 45 -000 .000 .000 2.000 50

÷

ندي مر ا

الله ^{الم}عرب الله المعرب المعرب المعرب

Table 6.7	COMEINED GAS	-STEAM TUREI RAMETRIC POIN	NE CYCLE AC	COUNT LIST	INC	
ACCOUNT NO. 8	NAME: UNIT	AMOUNT MA	AT \$/UNIT IN	S SJUNIT	MAT COST+\$	INS COST+\$
SITE DEVELOPMEN 1. 1 LAND COST 1. 2 CLEAPING 1. 3 GRADING L 1. 4 ACCESS RA 1. 5 LOOP RAIL 1. 6 SIDING R 1. 7 OTHER SIT PERCENT TOTAL	T ACRE LAND ACRE AND ACRE ILRGAD MILE ROAD TRACK MILE R TRACK MILE E COSTS ACRE DIRECT COST IN A	53.) 16.7 57.0 5.0 5.0 1.0 1.0 1.0	1000.97 .00 .115000.00 125000.00 125000.00 125000.00 .09 .09	.03 600.00 300.00 11000.00 70000.00 8000.00 .00 TOTAL:\$	50909.01 .00 575600.00 125000.00 118248.30 868248.89	\$995.00 150000.00 550000.00 80000.00 118248.90 903247.93
EXCAVATION & PI 2. 1 COMMON EX 2. 2 PILINC PERCENT TOTAL	LING CAVATION YD3 DIRECT COST IN A	13900.0 52800.0 00001 2 = 1	.)) 6.50 .452 Account	3.00 8.50 Total.\$.00 343266.00 343200.00	53400.00 442800.00 508200.00
PLANT ISLAND CO 3. 1 PLANT IS. 3. 2 SPECIAL S PERCENT TOTAL	NCRETE CONCRETE YD3 TRUCTURES YD3 DIRECT COST IN A	6600.0 100000000000000000000000000000000	70.00 .00 1.700 Account	8C.00 09 Total.s	462000.00 •00 462000.00	528000.0C 00 528000.00
HEAT REJECTION 4. 1 COOLING TI 4. 2 CIRCULATI 4. 3 SURFACE CI PERCENT TOTAL	SYSTEM OMSRS EACH NG H2C SYS EACH ONDENSER FT2 DIRECT COST IN A	5.0 1.0 115074.3 CCOUNT 4 = 4	.]0 .00 .]0 1.279 ACCOUNT	•03 •00 •00 TCTAL•\$	757500.00 306347.74 543937.39 1617785.12	382500.00 410773.60 80551.98 373825.57
STRUCTURAL FEAT 5. 1 STAT. STRU 5. 2 SILOS & B 5. 3 CHIMNEY 5. 4 STRUCTURAL PERCENT TOTAL 1	URES UCTURAL ST. TON UNKERS TPH ST L FEATURES EACH DIRECT COST IN A	703.0 .0 1.0 CCOUNT 5 = 1	550.00 1800.00 .90 222000.00 .677 ACCOUNT	175.00 756.00 00 77000.00 Total.\$	455000.00 .00 322000.00 777000.00	122500.00 -CQ -00 77000.00 199500.00
BUILDINGS 6. 1 STATION B 6. 2 ADMINSTRAT 6. 3 NAREHOUSE PERCENT TOTAL	UILDINCS FT3 TION FI2 8 Shop ft2 Direst cost in A	2210000.0 250J.0 5000.0 CCOUNT 6 = 1	.16 15.00 12.00 .515 Account	-16 14.00 8.00 Total,\$	353600.00 40000.00 60000.00 453600.90	353600.00 35000.00 4000.00 428600.00
FUEL HANDLING & 7. 1 COAL HANDI 7. 2 DOLOMITE H 7. 3 FUEL OIL H PERCENT TOTAL H	STORAJE LING SYS TPH HAND. SYS TPH HAND. SYS GAL DIRECT COST IN A	•0 7250060.0 CCOUNT 7 = 2	.CC .DD .CD .037 Account	.00 .00 .00 Total.,\$	00 00 668026.07 658096.07	•C0 •D0 517891•43 517891•43
TUEL PROCESSING 8. 1 COAL DRYE 8. 2 CARBONIZED 8. 3 GASIFIERS PERCENT TOTAL	R & CRUSHER TPH RS TPH Direct Cost in A	-0 -9 -0 CCOUNT 8 =	00. 00. 00. 100. 00. 00. 00. 00.	•00 •00 •00 Total #\$	00. 00. 00. 00.	00. 00- 03- 00-

mentarion and the territory and the

6-70

¥

F

 $\mathbb{E}[\mathbb{N}]$ at \mathbb{R}^{n}

Â,

Table 6.7 C Continued	COMBINED GAS-STEAM Parametr	TURBINE CYCLE IS POINT NO. 2	ACCOUNT LIS	TING	
ACCOUNT NO. & NAME	• UNIT AMO	UNT MAT SJUNIT	INS \$/UNIT	MAT COST.S	INS COST+\$
FIPING SYSTEM 9:1 Percent total direc	TRUGOST IN ACCOUNT	0. 334 JJJ. = 6	OUNT TCTAL.5	00 •00	00. 130
VAPOR GENERATOR (FIR 10.1 Percent total direc	NED) St cost in account	10° = 013. = 01	DO CUNT TCTAL+\$	•00 •CC	00. 03.
ENERGY CONVERTER 11. 1 GAS TURB COMP 11. 2 CAS TURB COMP 11. 3 GAS TURB TURB 11. 4 CAS TURB TURB 11. 4 CAS TURB ENG A 11. 5 GAS TURB GENER 11. 6 G T MUFFLER & 11. 7 GAS TURB SNS M 11. 8 STEAM TURBINE	SECT EA SECT EA UX EA ATOR EA CGOLERS EA ISC EA FENER EA	2.0 1:05803.0 2.0 241500.6 2.0 2475400.0 2.0 1:38550.0 2.0 1:38550.0 2.0 1:48200.0 2.0 333590.0 1.0 5252631.5	50340.03 0 17075.00 123770.00 0 123770.00 0 227583.90 0 114820.00 114820.00 0 115725.90 0 115725.90 0 12578.57	2413500.00 683000.00 4950800.00 2777000.00 20557400.00 2296400.00 657000.00 6352631.62	127580.00 34150.00 382780.00 382780.00 255165.00 225640.00 233640.00 630650.57 2706260.57
COUPLING HEAT EXCHAN 12. 1 HEAT REC STEAM PERCENT TOTAL DIREC	GER GEN T COST IN ACCOUNT	2.0 45700CC.0 12 =20.408 ACC	0 1371000.00 DUNT TOTAL \$	\$140000.00	2742CDCCC 2742000.00
HEAT RECOVERY HEAT E 13 1 Percent total direc	XC4. T cost in account	13 ⁰ 000 ACC	DUNT TOTAL	03. 00.	03• 00•
WATER TREATMENT 14. 1 DEMINERALIZER 14. 2 CONDENSATE POL PERCENT TOTAL DIREC	GPM ISHING KWE T COST IN ACCOUNT	21.5 2500.6 0 1.2 14 = .118 ACC	0 700.00 5 .30 0UNT TGTAL.\$	53680.00 53680.00	15030.40 00 15030.40
POWER CONDITIONING 15. 1 STO TRANSFORME PERCENT TOTAL DIREC	R KVA 4775 T COST IN ACCOUNT	44.4 15 = 3.731 ACC	.00 OUNT TGTAL, \$	2153929 .7 2 2163929 .7 2	43278.59 43278.59
AUXILIARY MECH EGUIF 15. 1 BOILER FEED PU 16. 2 OTHER PUMPS 16. 3 MISC SERVICE S 16. 4 AUXILIARY BOIL PERCENT TOTAL DIREC	KENT M ^D SOR.KWE 1552 KWE 2260 YS KWE 3616 ER PPH T COST IN ACCOUNT	34.9 .5 27.6 .6 44.2 1.1 .0 4.0 16 = 1.725 ACC	5 .04 8 .12 7 .73 6 .80 5	85379.21 198904.29 423123.56 .00 707407.14	5209.40 27123.31 264000.23 .CC 297332.93
PIPE & FITTINGS 17. 1 CONVENTIONAL P 17. 2 Hot gas piping Percent total direc	IPING TON 3 FT T COST IN ACCOUNT	0C.6 30C0.6 .0 17 = 2.473 ACC	0 1800.00 90 CUNT TOTAL,\$	90000000000000000000000000000000000000	540000.00 • 30 540000 • 00

المتدرقين

6-71

The personal meters and the state of the sta

REPRODUCEDLITY OF THE ORIGINAL PACE IS POOR

7

THE OF COMPANY

Table 6.7 Continued	COMBINED 345-SI Para	EAM TURBINE METRIC POIN	CYCLE ACC T NO + 2	DUNT LISTEN	IC	
ACCOUNT NO. & M	IAME+ UNIT	AMOUNT MAT	F\$/UNIT INS	5 \$7UNIT 47	AT COST#\$	ENS COST,S
AUXILIARY ELES EC 18-1 MISC MOTERS 13-2 SWITCHSEAR 18-3 CONDUTTCAA 13-4 ISOLATE) PH 18-5 LICHTING & PERCENT TOTAL DI	DUIPMENT SFETC PAN KWE BLESFTRAYS FT IASE BUS FT COMMUN KWE IGECT COST IN ACCI	226027.6 225027.6 57C00.0 301.0 452C55.2 DUNT 18 = 7.	1.40 1.95 1.32 510.30 .35 444 ACCOUNT	.17 .45 1.36 450.00 .43 Total,\$	316438.64 1441553.81 884399.99 153000.00 158219.32 2953611.72	38424.69 10172.42 911199.99 135000.00 194383.73 1380720.81
CONTROL, INSTRUME 19. 1 COMPUTER 19. 2 OTHER CONTE PERCENT TOTAL D	NTATION Each Rols Each Irect cost in acc	1.0 1.0 DUNT 19 = 1	.CO 53009.90 .011 Account	.00 36000.00 Total.\$	492400.00 60000.00 552400.00	.0C 35000-00 36000-00
PROCESS WASTE SY 20. 1 BOTTOM ASH 20. 2 DRY ASH 20. 3 WEI SLURRY 20. 4 ONSITE DISI PERCENT TOTAL DI	STEMS TPH TPH Fosal Acre Irest Cost in Acci	•0 •0 •0 •0 •0 •0 •0	. 73 . CD . 90 7676.49 . 900 Account	.00 .00 .00 11070.89 Total.\$	00 00 00 00 00	20. 93. 93. 93. 00.
STACK GAS CLEANIN 21. 1 PRECIPITATO 21. 2 SCRUBBER 21. 3 MISC STEEL PERCENT TOTAL DI	IS DR EACH KWE & DUCTS Rest Cost in Acco	•C •9 •C •0 •C •1 •C • •	34.15 34.15 300 account	.00 15.55 .00 Total.\$	00 00 00 00	00. 00. 03. 00.

TOTAL DIRECT COSTS.S

6-72

د در این در در میشود. مرد به شر در معرفه و از روهه شموه

45858789.00 11354591.87

17

E

6-73

Table 6.8 COMMINED GAS-STEAM TURBINE CYCLE SUMMARY FLANT RESULTS

1994

PARAMETRIC POINT	1	2	3	4	5	6	7	8
TOTAL CAPITAL COST	393.37 4.227 1.538 10.188 13.447 10.765 13.075 24.200	99.84 4.6851 4.6851 5.0353 6.31 5.31 6.31 6.31 6.31 6.31 6.31 6.31 6.31 6	32.44 2.414 3.533 4.951 5.740 5.057 7.115 8.670	195.30 4.627 1.355 9.902 11.431 10.115 12.212 25.260	206.81 4.827 1.365 0.902 11.431 10.115 12.222 27.540		198.10 4.827 1.356 5.902 11.481 10.115 19.084 25.480	190.38 4.827 1.365 9.902 11.431 11.115 10.045 22.060
R TOT MAJOR COMPONENT COST ,MS E TOT MAJOR CCMPONENT COST,S/KWE S BALANCE OF PLANT SOST ,S/KWE L TOTAL DIRECT COST ,S/KWE PROF & OWNER COST ,S/KWE CONTINGENCY COST ,S/KWE E INT DURING CONSTRUCTION ,S/KWE TOTAL CAPITALIZATION ,S/KWE TOTAL CAPITALIZATION ,S/KWE COST OF LEC-CAPITAL ,MILLS/KWE COST OF LECC-CAPITAL ,MILLS/KWE COST OF LECC-OPEMAIN,MILLS/KWE COE 0.5 CAP. FACTOR ,MILLS/KWE COE 1.2XCAP. COST ,MILLS/KWE COE 1.2XCAP. COST ,MILLS/KWE COE (CONTINGENCY=C) ,MILLS/KWE	75.0877 95.46720 95.46520 2375959 2375959 200.152959 200.152959 200.152959 200.152959 200.152959 200.152959 200.152959 200.25739 200.25739 200.25759 200.257	40200200775500255771 40205110000772721 111200007722721 101120000772272 101120000772272 101120000772272 101120000772272 10120000772272 101200000 10120000000 101200000 101200000 101200000 101200000 101200000 101200000 10120000000000	35.539 51.3329 153.5258 12.32221 22.24210 12.2224 23.5258 12.2224 23.5258 12.2224 23.5258 12.2224 23.5258 12.990 22.55741 29.55741 29.55741 29.55741 29.55768 21.5481 20.55768 21.5882	75.17115 94.79733 148.222834 1110.348719 11292265 148.348179 129226775 18.799290 129226775 18.799290 18.7956679340 29.7956679340 29.7956679340 29.795667932 20.67732 20.67732 20.67722 20	77 + 352 97 + 3563 295 - 66 + 1 155 - 7 356 + 1 155 - 7 356 + 1 125 - 7 356 + 1 34 + 9367 + 1 34 + 9367 + 1 25 - 9367 + 1 34 - 9367 + 1 35 - 9367 + 1	Not Calculated	73.255 93.617 25.127 151.9335 12.1555 12.5212 33.3555 12.5212 33.3555 12.5212 33.3555 12.5212 33.3555 12.5212 33.3555 12.5212 33.3555 12.5212 33.3555 12.555 25.3722 12.555 25.3722 12.555 25.3722 12.555 25.3722 12.555 25.3722 12.555 25.3722 12.555 25.3722 12.555 25.3722 12.555 25.3722 25.3722 25.555 27.5555 27.555 27.5555 27.5555 27.5555 27.5555 27.5555 27.5555 27.5555 27.5555 27.5555 27.5555 27.5555 27.5555 27.5555 27.5555 27.5555 27.5555 27.55555 27.55555 27.55555 27.55555 27.55555 27.555555 27.5555555 27.5555555555	69.795 90.468 28.166 143.186 14.365 11.955 10.320 232.671 245.766 7.801 19.325 27.715 30.167 29.275 30.167 29.275 31.590 27.556
PARAMETRIC POINT	3	10	11	12	13	14	15	15
TOTAL CAPITAL COST .MS GAS TURBINE COMPRESSOR SECT.MS GAS TURBINE COMB BASKETS .MS GAS TURBINE TURBINE SECTION.MS N MISC GAS TURBINE AUXILIARY .MS T GAS TURBINE SENERATOR .MS HEAT RECOVERY STEAM SEN .MS	191.92 4.927 1.366 3.924 11.540 13.173 5.781 22.743	192.80 4.827 1.366 9.980 11.424 10.062 9.925 23.320	191.01 4.827 1.366 9.902 11.481 13.115 9.855 27.520	196.27 4.827 1.366 9.902 11.481 10.115 9.870 24.720	183.59 4.927 1.366 9.902 11.481 10.115 5.163 21.104	168.33 4.827 1.366 9.902 11.481 10.115 10.030 23.123	193.60 4.327 1.366 9.902 11.481 13.115 5.023 23.120	216.13 4.827 1.366 9.912 11.481 10.115 11.938 31.640
R TOT MAJOR COMPONENT COST	$\begin{array}{c} 70.349\\ 90.527\\ 29.437\\ 148.219\\ 148.219\\ 148.410\\ 11.857\\ 10.330\\ 29.424\\ 7376\\ 7.307\\ 19.583\\ 27.583\\ 30.0375\\ 29.145\\ 31.421\\ 27.145\\ 31.421\\ 27.147\\ 26.532\end{array}$	70.803 91.445 225.4685 144.555 144.555 144.555 144.555 24.78 24.78 24.78 24.78 24.78 24.78 24.78 24.78 24.78 24.78 25.719 25.719 26.28 21.425 26.28 27.119 29.257 29.257 29.257 20.2577 20.25777 20.25772 2	70.0066 90.853 29.546 148.734 14.445 11.899 10.353 25.480 27.711 7.9331 15.539 27.757 30.2114 29.323 31.624 27.704	$\begin{array}{c} 72.281\\ 92.781\\ 29.383\\ 151.14.755\\ 12.534\\ 30.4036\\ 7.953\\ 251.935\\ 27.6591\\ 30.4036\\ 7.9559\\ 27.6591\\ 30.1923\\ 29.284\\ 31.559\\ 27.6691\\ 30.1923\\ 29.284\\ 31.559\\ 27.6691\\ 30.61923\\ 29.284\\ 31.559\\ 27.6691\\ 30.61923\\ 29.284\\ 31.559\\ 27.6691\\ 30.61923\\ 29.284\\ 31.559\\ 27.6691\\ 30.61923\\ 29.284\\ 31.559\\ 27.6691\\ 30.692\\ 29.284\\ 31.559\\ 27.6691\\ 30.692\\ 29.284\\ 31.559\\ 27.6691\\ 30.692\\ 29.284\\ 31.559\\ 27.6691\\ 30.692\\ 29.284\\ 31.559\\ 27.6691\\ 30.692\\ 29.284\\ 31.559\\ 27.6691\\ 30.692\\ 29.284\\ 31.559\\ 20$	67.957 90.674 29.054 29.054 14.1488 11.299 27.7470 14.1488 11.299 27.755 14.7.789 22.2755 22.2777 22.27777 22.27777777777	$\begin{array}{c} 7C & .84C \\ 90 & .354 \\ 27 & .736 \\ 144 & .366 \\ 13 & .739 \\ 11 & .0655 \\ 28 & .861 \\ 24 & .861 \\ 24 & .861 \\ 24 & .861 \\ 24 & .5564 \\ 27 & .5564 \\ 23 & .5565 \\ 23 & .632 \\ 3C & .637 \\ 26 & .738 \\ 26 & .14C \end{array}$	69.234 96.207 326.555 164.555 164.58 12.1849 34.9919 26.9449 20.5526 2	81.268 101.843 29.054 31.258 162.155 15.941 12.972 11.331 32.385 27.842 8.562 18.6888 27.832 36.512 29.544 31.5683 27.674

*

COMPINED GAS-STEAM TURBINE CYCLE SUMMARY PLANT RESULTS Toble 6.8 Continued

PARAMETRIC POINT	17	18	19	20	21	22	23	24
TOTAL CAPITAL COST .MS P GAS TURBINE COMPRESSOR SECT.MS GAS TURBINE COMPRESSOR SECT.MS A GAS TURBINE COMB BASKITS .MS MISC GAS TURBINE AUXILIARY .MS T GAS TURBINE CENERATOR .MS SIEAM TURBINE SINERATOR .MS HEAT RECOVERY STEAM GEN .MS	212.42 3.620 1.024 7.420 3.611 7.586 13.036 20.998	2 95.48 2.414 5.583 4.951 5.740 5.057 1.5.933 26.610	273.25 2.414 4.951 5.740 5.057 24.852 34.998	92.25 2.414 633 4.951 5.740 5.057 6.457 10.200	38.34 2.414 6533 4.951 5.740 5.057 5.285 8.730	39.95 2.414 633 4.962 5.770 5.085 5.315 5.140	89.77 2.414 683 4.940 5.712 5.031 5.390 9.150	89.24 2.414 683 4.951 5.740 5.057 5.325 2.880
R TOT MAJOR COMPONENT COST ,MS E TOT MAJOR COMPONENT COST ,S/KWE S BALANCE OF PLANT COST ,S/KWE U SITE LABOR ,S/KWE L TOTAL DIRECT COST ,S/KWE PROF & OWNER COSTS ,S/KWE R CONTINGENCY COST ,S/KWE R TOTAL CAPITALIZATION ,S/KWE A TOTAL CAPITALIZATION ,S/KWE COST OF ELEC-CAPITAL MILLS/KWE O COST OF ELEC-CAPITAL MILLS/KWE O COST OF ELEC-OP&MAIN.MILLS/KWE O COST OF ELEC-OP&MAIN.MILLS/KWE O COST OF ELEC-OP&MAIN.MILLS/KWE COE 0.5 CAP. FACTOR .MILLS/KWE COE 1.2XCAP. COST ,MILLS/KWE COE 1.2XCAP. COST ,MILLS/KWE COE (CONTINGENCY=C) ,MILLS/KWE	73.352 93.362 34.3352 161.514 17.9214 12.0713 35.7514 12.0713 35.7514 12.0713 35.7514 12.0713 35.7514 12.0713 35.7514 12.0713 1.9.2353 2.9.2356 2.9.253 31.0366 322.6358 322.6358 322.6553 322.6553	52.399 79.702 52.591 143.69361 11.459 25.2641 11.459 25.2641 11.459 25.2609 29.2609 29.2609 29.2609 29.2609 29.2609 29.2609 20.2709 20.2609 20.2709 20	73.636 74.733 31.758 141.1203 141.1203 141.1263 141.1263 141.263 141.263 141.263 141.263 141.263 141.263 141.203 25.33550 20.36732 25.453 20.36732 25.453 25.55347 25.5347	35.502 91.603 322.3702 154.125 125.4035 129.225518 22.5518 238.02555 19.25558 238.055355 19.55356 238.055355 19.55359 27.55498 27.555498 27.55548 27.555548 27.555548 27.555548 27.5555548 27.5555548 27.5555548 27.5555548 27.555555555555555555555555555555555555	33.951 89.183 325.225639 149.9955 14.99950 21.35956 21.35956 21.35956 21.3574 19.45926 231.3774 19.459239 231.3774 19.459239 25.5229 25.5259755 31.59554	34.369 88.955 32.452 150.347 15.512 12.053 22.054 23.737 19.255 23.737 19.255 29.551 27.2454 25.791 22.75791 22.75791 22.75791 22.75791 22.644 25.493	34 319 89 241 32 5185 151 2253 15 0076 22 109 23 439 19 3691 27 359 29 5991 27 359 20 5991 27 359 25 901 22 837 25 901 22 837 25 93	54.250 88.493 32.518 150.326 14.951 12.026 9.018 21.9596 231.926 26.537
PARAMETRIC POINT	25	25	27	28	29	30	31	32
TOTAL CAPITAL COST .MS 9 GAS TURBINE COMPRESSOR SECT.MS 4 GAS TURBINE COMB BASKETS .MS 4 GAS TURBINE COMB BASKETS .MS N MISC GAS TURBINE AUXILIARY .MS 7 GAS TURBINE SENERATOR .MS 8 STEAM TURBINE GENERATOR .MS HEAT RECOVERY STEAM SEN .MS	91.44 2.414 683 4.951 5.740 5.057 6.390 9.830	88.12 ?.414 .683 4.951 5.740 5.057 6.278 8.560	87.69 2.414 6.83 4.351 5.740 5.057 6.495 9.030	89.27 2.414 683 4.951 5.740 5.057 5.421 9.100	90.57 2.414 623 4.951 5.740 5.057 7.000 8.998	122.58 2.414 683 4.951 5.740 5.057 9.257 14.454	100.67 1.207 .342 2.475 2.870 2.529 10.330 9.198	134.63 1.207 2.475 2.870 2.529 12.981 12.268
R TOT MAJOR COMPONENT COST ,M\$ E TOT MAJOR COMPONENT COST ,KWE S BALANCE OF PLANT COST ,S/KWE U SITE LA30R , S/KWE T INDIRECT COST ,S/KWE PROF & OWNER COSTS ,S/KWE CONTINGENCY COST ,S/KWE E SCALATION COST ,S/KWE COST OF ELEC-CAPITAL MILLS/KWE D COST OF ELEC-FUEL ,MILLS/KWE D COST OF ELEC-FUEL ,MILLS/KWE COE D.S CAP. FACTOR ,MILLS/KWE COE 1.2XCAP. COST ,MILLS/KWE COE (CONTINJENCY) ,MILLS/KWE	35.115 30.932 32.454 15.32454 15.314 12.277 22.432 24.1578 7.4359 19.5311 27.3855 29.7425 29.6077	33.683 38.500 32.526 29.158 150.194 14.376 9.001 21.885 23.562 23.552 23.552 23.552 23.552 23.552 23.552 23.553 24.355 25.5731 25.5731 25.5731 25.5731 25.5731 25.5731 25.5731 25.575	34.430 83.132 29.812 27.796 14.174 11.664 8.754 21.296 22.9377 22.9377 22.9572 22.9	33.366 93.104 40.0423 15.103 15.103 13.023 23.1224 7.3552 24.78793 29.52237 31.6672 30.7593 31.6672 30.7593 31.6672 30.7993 31.6672 30.7993 31.6672 30.7993 32.8422 8.815	34.844 90.757 32.5919 155.1261 9.1751261	42.557 92.409 36.560 14.560 17.626 13.0778 29.3168 32.3168 32.3168 32.3168 32.3168 32.3168 32.3168 32.3168 32.3168 32.599 28.5984 31.6232 30.667 32.678 32.578 32.6783 32.6783 32.6783 32.6783 32.6783 32.6783 32.6783 32.6783 32.6783 32.6783 32.6783 32.6783 32.6783 32.6783 32.5774 32.6783 32.6783 32.67843 32.6783 32.574533.7783 32.6783 32.5745 32.574535745 3575555555555	28.950 81.851 45.836 40.137 20.4706 13.4255 33.7426 11.6555 33.75120 28.9988 22.6233 34.8361 32.6233 34.8261 37.5523 36.5532 31.5318	34.671 74.186 50.286 41.834 13.305 11.8802 35.5732 28.9732 28.97560 23.5191 33.2556 33.2777 37.9660 32.778 32.7881

100

Table 6.8 COMPARY CLANT STORY TUPTINE CYCLE SUMMARY CLANT RESULTS Continued

5	ARAMETRIC FOINT	33	34	35	36	37	3.6	30	40
S-IANT	TOTAL CAPITAL COST .MS GAS TURBINE COMPRESSOR DECT.MS GAS TURBINE DOMB BASKETS .MS GAS TURBINE TURRINE SECTION.MS MISC GAS TURBINE AUXILIARY .MS GAS TURBINE CENERATOR .MS STEAM TURBINE BENERATOR .MS HEAT RECOVERY STEAM CEN .MS	155.735 4.45945 1.014545 1.014545 1.014545 7.6705 3.735 1.015	147.22 4.827 1.222 3.373 7.946 7.533 16.220	144.33 1.2794 5.3294 5.9277 5.3355 14.265	137.25 8.907 1.237 2.931 2.851 7.928 5.325 13.016	131.42 4.450 1.147 0.535 0.770 0.871 15.814 23.440	127.17 4.234 0.451 3.329 5.531 8.533 18.555	163.13 5.338 1.352 11.114 9.674 8.773 7.753 11.725	155.37 8.907 1.359 10.553 9.256 7.226 15.120
A TODAL BUCHAR	TOT MAJOR COMPONENT COST .MS TOT MAJOR COMPONENT COST .MS BALANCE OF PLANT COST .S/KWE SITL LABOR .S/KWE TOTAL DIRECT COST .S/KWE INDIRECT COSTS .S/KWE CONTINGENCY COST .S/KWE CONTINGENCY COST .S/KWE INT DURING CONSTRUCTION .S/KWE TOTAL CAPITALIZATION .S/KWE COST OF ELEC-CAPITAL.MILLS/KWE COST OF ELECCOST .MILLS/KWE COE 0.5 CAP. FACTOR .MILLS/KWE COE 1.2XCAP.COST .MILLS/KWE COE 1.2XCAP.COST .MILLS/KWE COE 1.2XCAP.COST .MILLS/KWE COE 1.2XCAP.COST .MILLS/KWE	57.342 905.554 355.465.99 15.147 15.147 15.147 15.147 15.147 35.350 21.5511 25.13511 25.13511 25.13511 25.13511 25.13511 25.13511 25.13511 25.13511 25.13511 25.13511 25.147 35.2477 35.2477 35.2477 35.2477 35.2477735.24	55.5263 106.25390 17.2.770 16.4722 11.7715 1.5.7155 231.3735 231.3745 231.3945 231.3945 231.3945 231.3945 231.3945 231.3945 231.3945 231.3945 231.3945 231.3945 231.3945 231.3945 231.3945 231.3945 231.3945 231.3945 231.3945 231.3945 231.3955 235.3955 235.3955 235.3955 235.3955 235.3955 235.25555 235.255555 235.2555555 235.25555 235.2555555555555 235.25555555	55.733 122.424 35.1335 122.425 13.426 13.425 12.375 12.375 12.375 12.375 12.375 12.375 31.5403 31.5403 31.5403 32.5533 32.5428 32.5428 32.5428 35.4550 31.225 32.44850 31.225	55.303 39.32.132.421 211.231 18.575 13.6.271 36.421 211.231 18.575 36.255 13.6275 37.555 10.6075 34.2555 34.2575 34.2575 37.5594 34.2575 32.194 25.404 38.3713 32.975	552554170554720 5235554170554720 152554200 152554200 152554701594780 25580 25580 2554701594780 25580 255470 25587 20 35580 20 3770 35587 20 37700 377000 377000 377000 3770000 3770000000000	51 954 95 954 31 954 22 944 156 414 156 414 157 961 257 965 20 5591 28 965 20 5591 28 940 27 341 30 5754 27 341 30 5754 27 873 27 873	62.734 106.6275 30.658 169.758 15.550 11.588 31.788 31.788 277.422 2.77.422 2.7.590 2.9.960 2.9.980 2.9.8800 2.9.8800 2.9.88000 2.9	60.7597 114.4777 31.960 130.371 14.4230 14.4230 14.4230 14.4230 2.92745 2.92745 2.92745 2.92745 2.92745 2.92745 31.0555 2.9248 320555 2.9290 3505555 2.9856
> !	ARAMETRIC POINT	41	42	43	44	\$5	\$6	47	48
> LANT	TOTAL CAPITAL COST .MS GAS TURBINE COMPRESSOR SECT.MS GAS TURBINE COMB BASKETS .MS GAS TURBINE TURBINE SECTION.MS MISC GAS TURBINE AUXILIARY .MS GAS TURBINE SENERATOR .MS STEAM TUREINE CENERATOR .MS HEAT RECOVERY STEAM SEN .MS	200.90 4.453 10.243 10.627 9.785 11.504 24.750	1°2.42 4.327 1.366 9.302 11.481 13.115 23.230	133.82 3.339 1.424 15.522 15.864 3.952 2.978 13.305	175.35 8.907 1.430 11.093 10.491 9.592 8.195 17.444	235.57 4.459 1.220 1.3.759 11.888 12.354 13.692 32.940	220.94 4.327 1.435 11.994 12.085 11.155 11.315 23.235	707.10 8.333 1.497 11.100 12.044 11.104 5.900 23.240	195.69 8.977 1.501 11.501 11.731 10.874 20.270
RUSULT ARIA	TCT MAJOR COMPONENT COST .MS TOT MAJOR COMPONENT COST .S/KHE BALANCE OF PLANT COST .S/KHE SITE LABOR .S/KHE TOTAL DIRECT COST .S/KHE INDIRECT COSTS .S/KHE PROF & OWNER COSTS .S/KHE ESCALATION COST .S/KHE INT JURING CONSTRUCTION .S/KHE INT JURING CONSTRUCTION .S/KHE COST OF ELEC-CAPITAL.MILLS/KHE COST OF ELEC-CAPITAL.MILLS/KHE	72 .758 97 .019 26 .819 27 .641 143 .479 14 .097 11 .473 20 .973 20 .973 24 .231 24 .231 24 .231 25 .535	70.746 229.261 29.261 14.495 11.9375 29.553 72.879 72.879 7.99	69.488 97.464 299.5329 155.539 12.45551 12.477 33.53322 25.53220 25.53220 25.531	67.153 102.539 31.113 22.529 162.6241 14.957 13.0457 11.171 31.162 34.533 267.907 2.542	85.971 93.723 27.5950 145.5055 14.4075 11.6461 31.6461 31.6461 31.6461 31.7150 24.7150 24.772	81.072 99.634 27.585 145.410 14.149 11.033 10.283 25.734 33.231 24.442 7.725	77.223 91.349 28.359 147.648 13.949 11.870 29.691 33.034 24.691 29.691 33.034 24.691 27.794	73.677 94.566 29.0570 151.235 14.761 12.092 29.9333 33.304 20.99333 33.304 20.940

٠

Part of the second second

COMBINED GAS-STEAM TURBINE CYCLE SUMMARY FLANT RESULTS

Table 6.8 Continued

PARAMETRIC POINT	49	50	51	52	53	54	55	56
IDIGL CAPITAL COST	251.24 4.459 1.345 11.172 12.515 11.550 14.957 34.560	241.43 4.827 1.510 12.495 13.217 12.209 12.915 30.640	229.91 8.338 1.570 13.448 13.274 12.261 11.509 24.240	213.51 8.907 1.572 12.124 13.023 12.032 10.274 23.620	75.13 2.230 4.072 4.293 3.824 5.324 8.430	70.75 2.414 611 4.451 3.973 4.260 7.320	69.59 4.169 4.797 4.463 4.463 4.603 5.657 6.640	66.70 4.453 4.9925 4.9925 3.097 6.180
R IDT MAJOR COMPONENT COST . MS E TOT MAJOR COMPONENT COST . S/KWE S BALANCE DE PLANT COST . S/KWE U SITL LABOR	$\begin{array}{c} 33 \cdot 53 \\ 84 \cdot 767 \\ 256 \cdot 905 \\ 138 \cdot 271 \\ 11 \cdot 721 \\ 11 \cdot 721 \\ 12 \cdot 9527 \\ 23 \cdot 9577 \\ 23 \cdot 9377 \\ 7 \cdot 4325 \\ 235 \cdot 0877 \\ 7 \cdot 4325 \\ 235 \cdot 0877 \\ 7 \cdot 4325 \\ 26 \cdot 3255 \\ 26 \cdot 3255 \\ 26 \cdot 3525 \\ 27 \cdot 8111 \\ 29 \cdot 3657 \\ 25 \cdot 272 \\ 27 \cdot 2$	87.313 85.412 25.5.465 13.495 13.495 13.495 13.495 13.495 23.4.45 2.5.5.577 17.552 25.4.55 2.5.455 2.5.525 2.5.455 2.5.525 2.5.525 2.5.525 2.5.545 2.5.525 2.5.5555	94.741 97.6793 27.3736 140.758 17.1251 10.02505 23.5739 7.4935 23.5739 7.4935 23.51639 24.51639 24.51639 24.51639 24.51639 24.51639 24.51639 24.51639 25.119	91.557 90.5781 26.4155 113.4251 124.0655 113.4251 10.1374 29.7292 241.4294 29.7292 18.5283 26.5491 25.1357 26.5649 29.1355 26.5649 29.1355 26.5649 25.587	23.712 98.600 36.723 33.687 169.0100 17.1800 17.1800 23.4999 23.4999 23.4999 25.2223 21.5798 30.1400 32.535 31.772 34.5454 23.330	27.503 1C4.443 39.079 176.317 17.543 17.543 11.273 24.045 268.6573 21.537 25.6557 21.5397 21.5397 21.5397 21.5397 22.5397 32.66599 29.569	23.363 121.851 39.823 36.221 196.954 12.5756 11.326 26.0789 295.467 9.3724 21.758 31.7581 29.5467 9.3724 21.758 31.7581 29.5467 9.3724 31.7581 29.5467 9.3724 31.7581 29.5467 33.632 35.127586 35.12758 35.127586 35.12758 35.12758 3	27.757 134.417 42.750 38.864 215.031 17.282 12.2911 27.8712 322.9918 1C.211 27.8712 322.9918 1C.211 27.554 35.509 35.509 38.000 32.994 32.510
PARAMETRIC POINT	57	53	59	60	51	52	53	54
TOTAL CAPITAL COST **** GAS TURBINE COMPRESSOR SECT:*** GAS TURBINE COMB GASKETS **** GAS TURBINE TURBINE SECTION.*** N MISC GAS TURBINE AUXILIARY *** T GAS TURBINE SENERATOR **** STEAM TURBINE GENERATOR **** HEAT RECOVERY STEAM SEN ***	84.31 2.230 574 4.2885 4.435 6.415 9.220	80.17 2.414 647 4.725 4.965 4.515 5.331 8.320	78.18 4.159 .676 5.057 4.837 4.337 4.479 7.430	74.50 4.453 5.277 4.173 3.904 5.910	97.28 2.233 .6C7 5.174 5.343 4.893 7.725 11.244	88.02 4.159 5.311 5.432 4.981 5.471 8.453	83.64 4.453 .715 5.547 5.245 4.796 4.845 7.690	107.34 2.230 5.379 5.944 5.944 5.944 5.944 5.947 8.017 13.260
R TOT MAJOR COMPONENT COST .Ms E TOT MAJOR COMPONENT COST .S/KWE S BALANCE OF PLANT COST .S/KWE U SITE LABOR .S/KWE T INDIRECT COST .S/KWE PROF & OWNER COSTS .S/KWE B CONTINGENCY COST .S/KWE E INT DURING CONSTRUCTION .S/KWE E INT DURING CONSTRUCTION .S/KWE COST OF ELEC-CAPITAL.MILLS/KWE D COST OF ELEC-CAPITAL.MILLS/KWE D COST OF ELEC-CPUEL .MILLS/KWE D COST OF ELEC-OPSMAIN.MILLS/KWE COE 1.2XCAP. COST .MILLS/KWE COE 1.2XFUEL COST .MILLS/KWE COE (CONTINGENCY-COST .MILLS/KWE COE (CONTINGENCY-COST .MILLS/KWE COE 1.2XCAP.COST .MILLS/KWE COE (CONTINGENCY-COST .MILLS/KWE COE (CONTINGENCY-COST .MILLS/KWE COE (CONTINGENCY-COST .MILLS/KWE COE (CONTINGENCY-COST .MILLS/KWE COE (CONTINGENCY-COST .MILLS/KWE	32.026 31.275 33.828 31.011 156.114 15.815 12.489 3.231 22.446 24.1328 7.5956 20.5567 30.5567 30.5567 30.5567 30.5567 30.5567 30.5567 30.5567 30.756 30.756 30.756 30.757 30.7777 30.7777 30.7777 30.77777 30.77777 30.777777 30.777777777777777777777777777777777777	30.917 35.295 34.553 161.308 16.046 12.905 2.4.9925 2.4.998 7.812 20.535 22.812 24.998 7.811 20.574 7.811 20.574 7.811 20.574 7.811 20.574 7.817 32.608 28.2602 27.786	31.095 195.239 36.037 32.597 174.024 15.670 13.204 24.102 25.3357 20.502 20.502 20.502 20.502 29.462 32.0350 31.135 33.563 23.563 28.630	30.023 37.724 34.025 17.363 14.722 10.700 24.995 21.0700 24.995 278.536 9.805 21.040 30.435 33.189 28.590 32.195 34.643 32.195 34.643 32.573	37.216 91.257 32.4850 154.092 15.478 12.292 22.782 236.532 7.541 19.741 27.876 30.259 236.532 7.541 19.741 27.876 30.259 23.532 27.876 27.876 20.398 29.395 27.876 20.298 29.395 27.876 20.2988 20.29888 20.2988 20.2988 20.298888 20.298888 20.298888 20.29888888 20.2988888888888888888888888888888888888	34.526 95.747 33.5733 160.754 15.586 29.581 23.6935 246.6935 247.5955 247.5955 247.59555 247.59555 247.5955555555555555555555555555555555555	33.292 101.369 34.346 31.057 166.771 15.833 13.342 9.868 23.550 25.290 25.290 19.959 8.050 19.959 8.959 1.124 28.597 31.124 27.783	$\begin{array}{r} 40.946\\ 88.526\\ 30.970\\ 29.533\\ 149.029\\ 15.062\\ 9.087\\ 22.579\\ 22.579\\ 22.579\\ 232.075\\ 7.336\\ 13.299\\ 27.230\\ 29.542\\ 29.542\\ 29.542\\ 29.542\\ 29.542\\ 31.089\\ 26.870\\ 26.870\\ 26.844 \end{array}$

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

1

TABLE 6.8 COMMINED CAS-STEAM TUPEINE CYCLE SUMMARY FLANT RESULTS

and the second of the second data of the second second second second second second second second second second

Continued

6-77

107 Internet Weiterstein die termensterne

Continued								
PAPAMITRIC FOINT	٤E	6.6	67	E.8	63	70	71	72
TOTAL CAPITAL COST .MS F GAS TUPBINE COMPRESSOR SECT.MS A SAS TUPBINE COMB BASKETS .MS A SAS TUPBINE TUPBINE SECTION.MS N MISC BAS TUPBINE GENERATOR .MS I GAS TUPBINE GENERATOR .MS REAT SECUVERY STEAM CEN .MS	101.35 2.414 .713 5.257 5.049 5.578 7.573 11.346	95.73 4.169 .743 5.550 5.022 5.552 5.552 5.373 3.200	93.49 4.453 5.803 5.803 5.355 5.402 5.757 6.700	113.17 2.23C .573 5.586 5.258 5.775 9.392 11.865	111.24 2.414 .755 5.243 5.503 5.104 3.024 12.330	108.54 4.165 .785 6.724 6.537 6.131 7.112 10.780	192.10 4.454 .795 5.062 5.514 6.016 6.754 9.260	235.16 4.455 1.213 16.458 11.425 10.508 13.742 30.521
<pre>? FOT MAJOR COMPONENT COST ,Ms E TOT MAJOR CLAPPONENT COST , *** B ALLANCE ?? PLANT COST ,*** U LITL LAPOR **** TOTAL DIRECT COST **** PROF & OWNER COST ***** B CONTINCENCY COST ***** B CONTINCENCY COST ***** E INT BURING CONSTPUCTION ***** * TOTAL CAPITALIZATION ***** * TOTAL CAPITALIZATION ***** COST OF TLEC-FDEL ****** D COST OF TLEC-FDEL ******* D COST OF TLEC-FDEL ************************************</pre>	31311 31311	7 6114239 7 6114239 7 6114239 7 6114239 1 1000000000000000000000000000000000000	35.742 94.302 29.2521 125.2521 125.2522 125.2522 239.2559 239.2522 13.25357 239.25557 239.25557 25.88357 25.88357 25.88357 25.88357 25.5577 25.5577	$\begin{array}{c} 42.364\\ 52.367.77\\ 527.9925\\ 142.123\\ 14.370\\ 527.97.9\\ 14.370\\ 527.77\\ 11.370.3\\ 222.177\\ 12.370.3\\ 222.172.6\\ 222.172.6\\ 222.172.6\\ 19.260.5\\ 222.172.6\\ 19.260.5\\ 222.172.6\\ 2$	425-5-1019 255-1019 255-1019 255-77814 14-4-1015 2727-514 11-5-1015 2727-514 11-5-1015 2727-514 21-25-514 2027-554 2024-55-42 2024-55-42 2024-55-42 2055-25 20	$\begin{array}{r} 42.339\\ 82.097\\ 35.284\\ 27.812\\ 147.139\\ 147.139\\ 147.139\\ 147.139\\ 24.134\\ 228.613\\ 24.134\\ 228.613\\ 24.134\\ 228.613\\ 24.134\\ 228.613\\ 24.134\\ 228.613\\ 24.134\\ 228.613\\ 25.85\\ 25.433\\ 25.85\\ 25.433\\ 25.85\\ 25.433\\ \end{array}$	39.846 82.7c7 27.519 145.803 14.744 6.927 23.770 22.913 22.913 22.913 2.5867 25.867 25.867 25.8674 27.774 25.9151 25.924 25.572	88.329 96.04 27.728.41 152.22 12.79 12.17 12.79 31.83 255.70 18.738 27.994(29.92 25.22 25.23 26.95 25.23
TUTOL DITT	73	74	75	75	77	73	79	80
TOTAL CAPITAL COST ,MS CAS TURBINE COMPRESSOR SECT.MS L GAS TURBINE COMPRESSOR SECT.MS 4 945 TURBINE TURBINE AUXILIARY ,MS N MISC GAS TURBINE AUXILIARY ,MS T GAS TURBINE SENERATOR ,MS STEAM TURPINE GENERATOR ,MS HEAT RECOVERY STEAM SEN ,MS	216.12 4.327 1.366 13.551 11.862 10.923 10.643 23.420	203.39 3.333 1.424 1.3.418 11.774 10.845 5.452 20.920	200.30 3.307 1.430 19.333 11.440 13.522 8.450 13.530	252.72 4.459 1.213 21.253 11.969 11.032 13.667 32.200	243.02 4.827 1.366 24.235 12.464 11.521 11.061 23.249	232.14 8.338 1.424 25.892 12.451 11.490 5.910 22.480	222.33 8.907 1.436 27.368 12.146 11.201 8.884 19.560	
R JOI MAJOR COMPONENT COST . M\$ F IOT MAJOR COMPONENT COST. \$/KWZ S DALANCE OF PLANT COST . \$/KWZ L TOTAL DIRECT COST . \$/KWE L TOTAL DIRECT COST . \$/KWE T INDIRECT COSTS . \$/KWE 3 CONTINSENCY COST . \$/KWE B CONTINSENCY COST . \$/KWE A JOTAL CAPITALIZATION . \$/KWE A JOTAL CAPITALIZATION . \$/KWE D COST OF ELEC-CAPITAL. MILLS/KWE D COST OF ELEC-CAPITAL. MILLS/KWE D COST OF ELEC-CAPITAL. MILLS/KWE N COE 3.5 CAP. FACTOR . MILLS/KWE COE 1.2XCAP. COST . MILLS/KWE COE 1.2XFUEL COST . MILLS/KWE COE 1.2XFUEL COST . MILLS/KWE COE 1.2XFUEL COST . MILLS/KWE COE 1.2XFUEL COST . MILLS/KWE	81.712 35.157 23.372 157 27.29 13.3054 13.5401 251.9585 251.9585 251.9585 251.9585 251.9585 25.5828 25.5728 25.5728 25.5728 25.5728 25.5728 25.5728 25.5728 25.5728 25.5728 25.5728 25.5728 25.5728 25.5728 25.5728 25.5745 25.5755 25.57555 25.57555 25.57555555555555555555555555555	21 • 171 1 22 • 170 23 • 823 1 53 • 950 1 4 • 246 1 2 • 958 1 4 • 246 1 1 • 1094 255 • 5612 1 8 • 55612 1 8 • 55612 2 6 • 03766 3 7 • 2248 1 8 • 55612 2 6 • 03766 3 7 • 2248 1 8 • 55612 2 6 • 03766 3 7 • 2248 1 8 • 55612 2 6 • 03766 3 7 • 2248 1 8 • 55612 2 6 • 03766 3 7 • 2248 1 8 • 55612 2 6 • 03766 3 7 • 2248 1 8 • 5564 2 6 • 03766 3 7 • 2248 1 8 • 5564 2 6 • 03766 3 7 • 2248 1 8 • 5564 2 6 • 03766 3 7 • 2248 1 8 • 5564 2 6 • 03766 3 7 • 2248 1 8 • 5564 2 6 • 03766 3 7 • 2248 1 8 • 5564 2 6 • 03766 1 8 • 0566 2 7 • 0566 2 6 • 05766 1 8 • 0566 2 6 • 05766 1 8 • 0566 1 8 • 05666 1 8	$\begin{array}{c} 78.737\\ 175.950\\ 29.788\\ 23.325\\ 165.063\\ 14.4205\\ 11.445\\ 11.445\\ 72.053\\ 11.445\\ 72.053\\ 19.053\\ 272.054\\ 19.053\\ 28.953\\ 30.941\\ 26.955\\ 30.955\\ 30$	97.740 97.740 27.292 153.134 12.972 153.134 120.9722 357.453 120.9722 357.453 120.9722 357.453 120.9722 357.453 120.9722 357.453 120.0666 29.7509 20.5735 20.57555 20.57555 20.57555 20.57555 20.57555 20.57555 20.57555 20.57555 20.57555 20.575555 20.575555 20.57555555 20.5755555555555555555555555555555555555	93.784 102.374 27.8236 158.039 14.353 112.2049 358.039 112.2049 358.039 12.2049 264.5021 18.2049 264.5021 18.2059 27.7713 25.523 30.5751 25.523 30.5754	91.965 28.1920 27.695 163.451 14.1276 11.503 32.7700 3	83.495 122.418 222.849 27.397 169.164 14.227 13.379 37.158 279.278 8.477 584 27.650 26.1650 231.5550 27.390 25.650 25.656 31.5555 27.390 26.97	Not calculated

COMBINED GAS-STEAM TUPBINE CYCLE SUMMARY FLANT RESULTS Table 6.8 Continued

+MILLS/KWE

PARAMETRIC POINT 81 82 83 84 85 86 87 88 TOTAL CAPITAL COST 195.09 , 45 GAS TURBINE COMPRESSOR SECTIMS GAS TURBINE COMPRESSOR SECTIMS GAS TURBINE TURBINE SECTION.MS MISC BAS TURBINE AUXILIARY MS GAS TURBINE GENERATOR MS STEAM TURBINE BENERATOR MS HEAT RECOVERY STEAM GEN MS 4.827 • 1.365 Ā 11.811 м 10.333 23.600 Not calculated R TOT MAJOR COMPONENT COST .MS E TOT MAJOR COMPONENT COST.S/KWE 72.513 .45 90.457 SALANCE DE PLANT COST 23.425 27.745 . 5/KNS SITE LABOR FOTAL DIRECT COST INDIRECT COSTS PROF & DWNER COSTS SROF & DWNER COSTS SROF & DWNER COSTS STANDENCY COST SYKWE SCALATION CONTINGENCY COST INT DURING CONSTRUCTION SYKWE TOTAL CAPITALIZATION SYKWE COST OF ELEC-CAPITAL MILLS/KWE COST OF ELEC-CAPITAL MILLS/KWE COST OF ELEC-CAPITAL MILLS/KWE TOTAL COST OF ELEC-FYEL COST OF ELEC-CAPITAL MILLS/KWE COE D-S CAP. FACTOR MILLS/KWE ũ .S/KWE 146.527 11.730 10.250 29.253 32.587 244.613 20.077 2 0 -588 30.823 25.373 25.944 32.413 1.2XCAP. COST 1.2XFUEL COST COE MILLS/KWE 1 . 2X- UEL .MILLS/KWE COE (CONTINGENCY=C) +MILLS/KWE 27.964 27.351 COE COE (ESCALATION=3) .MILLS/KHE PARAMETRIC POINT 88 30 91 32 33 94 95 96 TOTAL CAPITAL COST ,MS GAS TURBINE COMPRESSOR SECT,MS GAS TURBINE COMB BASKETS ,MS GAS TURBINE TURBINE SECTION.MS MISC GAS TURBINE AUXILIARY ,MS 205.94 4.327 1.356 205.88 184.87 .00 .00 .00 .00. .00 .000 033. 200. 200. 200. 000. 4.927 4.827 .000 L 1.360 3.932 11.020 13.115 10.956 23.492 9.902 11.020 10.115 11.774 27.554 000 000 000 000 .000 .000 .000 9.902 11.620 80 • M\$ • M\$ STEAM TURBINE SENERATOR STEAM TURBINE GENERATOR HEAT RECOVERY STEAM SEN 11.115 .000 .000 .000 000. .000 т 333. 21.528 .000 * M \$.000 76.673 37.555 28.916 30.590 157.361 15.601 12.589 10.975 31.337 34.872 262.735 3.3065 15.025 535 .000 .000 R TOT MAJOR COMPONENT COST 1MS 76.567 58.419 010. .000 .000 23.264 TOT MAJOR COMPONENT COST. S/KWE 91.745 .000 .000 000. .000 .000 S BALANCE OF PLANT COST .S/KWE 28.938 .000. .000 .000 BALANCE OF PLANT COST .\$/KWE SITE LABOR .\$/KWE TOTAL DIRECT COST .\$/KWE INDIRECT COSTS .\$/KWE PROF & OWNER COSTS .\$/KWE CONTINGENCY COST .\$/KWE ESCALATION COST .\$/KWE INT DURING CONSTRUCTION .\$/KWE TOTAL CAPITALIZATION .\$/KWE COST OF FLEC-CAPITAL.MILLS/KWE COST OF FLEC-COPRMATN.WILLS/KWE 25.264 30.429 157.294 15.514 12.584 10.973 31.320 34.854 20.2538 .000 .000 .000. 000. 1 28.441 149.125 14.505 11.930 10.349 29.360 32.633 247.902 .000 .000 000. 000. 000. 000-000-000-.000 .000 .000 000.000 R .000 .000 .000 000. 000. .000 Ā 8.239 000. 7.937 .000. ñ COSI OF ELEC-OPSMAIN.MILLS/AME TOTAL COST OF ELEC .MILLS/KWE COE D.5 CAP. FACTOR .MILLS/KWE COE D.8 CAP. FACTOR .MILLS/KWE 535 27.916 30.519 26.284 29.577 31.721 27.452 26.736 5998 5998 59889 504999 264267 29558 29558 21.700 27.434 26.773 23.420 33.332 26.876 23.937 32.420 27.933 27.371 .000 2 000. 000. .000 Ŵ CCO. 333 223 333 223 .000 .000 .000. 000. MILLS/KWE .000 .000 .000 .000 COE 1.2XCAP. .070 1.2XFUEL COST (CONTINGENCY=)) (ESCALATION=D) .000 000.000 NCY=J] .MILLS/KWE COE .000 .000

.000.

.

10

REPRODUCIBILITY ORIGINAL PAGE IS

OF

THE

POOR

6.6 Analysis of Overall Cost of Electricity

The results of capital cost determinations, thermodynamic efficiency calculations, as well as the results of the analysis of coalderived fuel prices and balance of plant costs, have been factored into the COE calculations for the parametric variations described in the earlier sections. Table 6.9 presents a summary of these COE for each parametric point investigated.

In preparing the COE results, a more detailed examination was made of the effects of selected parameters on the results. Parameters for which these variations were investigated include: labor rate, contingency, escalation rate, interest during construction, fixed charge rate, fuel cost, and capacity factor. The results of these studies for Base Cases A and B are given in Tables 6.10 and 6.11,

The COE has been calculated as a function of several cycle parameters, including gas turbine compressor pressure ratio, turbine inlet temperature, and the nominal steam cycle throttle conditions. The use of steam induction and supplementary heat recovery steam generator firing has been investigated. In addition, variations in the methods of steam cycle heat rejection and comparisons of the use of gasified coal and clean distillate from coal as a fuel have been analyzed.

COE calculations were made for turbine inlet temperature variations from 1255 to 1700°K (1800 to 2600°F) and for compressor pressure ratio values ranging from 8 to 20. These variations in gas turbine parameters were investigated in conjunction with each of two steam bottoming cycles: first, a reheat 16.547 MPa/811°K/811°K (2400 psig/1000°F/1000°F) arrangement and, second, a nonreheat cycle with nominal throttle conditions of 8.618 MPa/783°K (1250 psig/950°F). Results of these calculations, for the cases with air-cooled gas turbine vanes and blades, are shown in Figure 6.32. As indicated, the COE steadily decreases as gas turbine inlet temperature increases, with a small COE advantage at lower temperature obtained with the nonreheat steam cycle.

CAPITAL COST, \$7K45 COE CAPITAL COE FJEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST PAPAMETRIC POINT PAFAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF 6-80

Table 6.9

FAPAMETRIC POINT

THERMODYNAMIC SFE POWER PLANT EFF

DVERALL ENERGY EFF CAP CUST MILLION &

MERICODUCTBILITY ORIGINAL PAGE IS OF OF THE POOR

calculated 8.217 13.733 13.073 18.792 5.952 19.342 13,133 13.325 1.702 .589 .591 27.313 .591 .589 .588 -588 27-570 not 27.190 27.715 24.251 4.000 3.000 3.006 3.984 3.986 3.973 3.964 10 11 13 14 15 16 9 12 THERMODYNAMIC EFF FOWER PLANT EFF DVERALL ENERGY EFF CAF, COST MILLIGN \$. 200000 .000 .000 .000 .000 .000 .446 .432 -462 .461 .459 .464 .467 .475 .233 .232 1'.5.270 .225 .235 .213 .231 .243 191-922 192.798 121.014 193.586 188.334 193.603 216.125 CAPITAL COST. #/KWE COE CAPITAL COE FUEL CDE OP & MAIN COST OF ELECTRIC EST TIME OF CONST 245.975 249.103 7.807 7.872 251.935 244.355 245-213 255.719 247.711 7.831 270.842 8.562 20.543 19.259 589 27.719 3.967 13.337 17.139 19.183 19.019 13.891 •552 27.154 3.972 .579 . 588 •588 27.691 3.971 23.214 3.943 27.593 27.757 29.525 27.832 3+969 23 24 17 13 19 20 21 22 .000 . 333 .000 .000 .000 .000 .000 .003 .458 .461 .438 .425 .461 .457 .460 .458 OVERALL ENERGY SEE CAP COST MILLION \$ 233 52 255 238 035 7 525 -231 89-772 .221 .214 .231 .233 .230 .232 205.479 252.504 6.298 89.945 232.787 7.359 CAP COST MILLION \$ 712.424 CAPITAL COST. \$/KWE 201.932 COE CAPITAL 6.912 88.843 231.374 7.314 276 251 254 383 82.241 233.434 231.925 7.379 7.332 19.399 19.375 .591 .591 COE CAPITAL COE FUEL COE OP & MAIN COST OF ILCTRIC EST TIME OF CONST 0.358 23.252 13.235 591 27.245 3.001 19.339 .591 27.359 2.999 29.234 19.237 20.900 19.418 .551 •636 .615 28.734 4.448 23.159 29.873 27-323 27.349 27.298 PARAMETRIC POINT 25 25 27 28 29 30 31 32 • 330 • 453 .000 .000 .000 •000 •396 •200 100•673 THERMODYNAMIC EFT .300 .460 .000 .000 .427 FOWER PLANT EFF -465 .457 .444 OVERALL ENERGY EFF CAP COST MILLION \$.232 234 87.691 .215 23.286 -230 90-573 122.577 .223 •193 91-444 88.122 134.627 249.084 7.874 20.799 .552 CAPITAL COST. \$/KWE 284.531 8.999 289.060 9.106 235.799 231.534 224.619 7.101 235.940 265-158 8.414 19.971 .599 23.934 3.612 COE CAPITAL COE FUEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST 7.486 19.593 22.404 19.333 19.100 19.419 23.519 .592 ...631 27 490 27.395 25.753 29.223 32.023 33.255 27.470 2.998 3.001 PARAMETRIC POINT 34 35 36 39 33 37 38 40 .000 .099 .090 .000 THERMODYNAMIC EF .000 .000 .000 .000 •415 •414 •219 •209 156•788 147.218 269.330 231.340 8•516 8.884 POWER PLANT EFF JVERALL ENERGY EFF CAP COST MILLION \$.386 .403 .440 .439 .431 .418 213 167.166 217 163.129 277.422 8.770 155.373 137.258 181.420 COT CAPITAL 257.303 8.153 20.200 591 312.433 337.565 255.731 292.743 COT COL CAPITAL COL FJEL CDE OP & MAIN COST.OF ELECTRIC EST TIME OF CONST 22.035 593 32.442 3.627 23.005 21.333 21.445 23-152 20.599 21.213 .597 .594 594 34-270 .593 32.934 39.511 23 841 3 807 28 944 23.360 31.059 3.774 3.544

COMPINED GAS-STEAM TURBINE CYCLE SUMMARY PLANT RESULTS

5

206.306

253.335

.000

.474

.239

.000

.472

.233

195.795

245.717

6

3

.033

.464

.234

92.436

235.951

2

-039 -459

.231

89.841

233.125

1

.436 385.066

495.559

15.697

.1333 .436

8

190.377

246.765

-999

.235

8.010

198.100 253.372

.465

.000

.459

•232

7.801

Ç

5.9 COMMINED GAS-STEAM TURBINE CYCLE SUMMARY PLANT RESULTS

Table 6.9 Continued

18-9

PAFAMITRIC POINT THERMODYNAMIC EFF PCWER PLANT EFF DVERAL ENERGY EFF CAP COST MILLION & CAPITAL COST, WILLION & COE CAPITAL COE CAPITAL COE OF B MAIN COST OF ELECTRIC EST TIME OF CONST	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43 100 000 462 453 233 223 420 103 817 131 257 822 844 0150 549 537 553 25 304 958 3.910	44 - 137 - 443 - 224 175.350 27.307 2.7.307 2469 20.024 - 588 - 3.091 3.952	45 .476 .249 235.566 245.866 7.772 13.628 .589 25.989 4.118	4E .481 .242 242 .942 244 .452 .5452 .585 .585 .4.075	47 .473 .233 225.562 7.097 245.562 7.794 18.794 .585 27.124 4.023	48 •900 •463 •234 195•692 251•174 7•940 19•155 •586 27•642 3•971
PAPAMETRIC POINT THERMODYNAMIC EFF FOWER PLANT EFF DVERALL ENERBY EFF CAF COST MILLION S CAPITAL COST.BYKWE COL CAPITAL COE FUEL COE OP & MAIN CUST OF ELECTRIC EST TIME OF CONST	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	51 273 .030 495 .490 253 .247 477 222.807 977 23.739 475 7.484 915 13.095 595 .524 925 25.153 168 4.123	52 • 930 • 482 • 243 213 • 511 241 • 429 7 • 632 1 3 • 425 • 583 2 • 583 4 • 076	53 .307 .415 .209 75.194 259.222 2.163 21.373 .598 33.140 2.857	54 .010 .416 .210 70.746 259.557 2.493 21.310 .594 30.397 2.807	55 900 467 205 53-592 295.467 5.372 21.794 592 31.759 2.751	56 .037 .392 .197 66.693 322.998 10.211 22.664 .592 33.467 2.690
PAPAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF DVERALL ENERBY EFF CAP COST MILLION & CAPITAL COST #XKWE COE CAPITAL COE CAPITAL COE FJEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST	57 58 .307 .435 .227 84.312 80 24.3.12 80 24.3.23 247 7.596 7 21.375 23 .590 23.557 28 2.952 2	59 44C 4433 222 218 165 73 183 39 264 757 811 8 370 171 2 1.532 592 591 574 29.452 911 2.863	60 •000 •422 •213 74.503 278.535 3.805 21.040 590 50.435 2.814	61 .227 .227 .276 233.532 .7.541 19.741 .595 .7.876 .3.030	62 .000 .454 .229 88.018 246.642 7.797 19.552 .533 27.933 2.960	63 • 000 • 445 • 224 83.636 254.659 8.059 19.959 19.959 23.597 2.917	E4 • 090 • 460 • 232 232-075 7•336 19•299 • 594 27•230 2•0 88
PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVERALL ENERGY EFF CAP COST MILLION S CAPITAL COST STAKE COE CAPITAL COE FUEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST	65 68 .133 .472 .233 .21 101.952 96 229.953 231 7.266 7 13.913 13 25.553 23 3.075 3	67 303 .019 471 .463 237 .234 726 .93.477 731 .239.922 326 .7.584 955 .19.155 528 .587 759 .27.325 642 .005	58 .030 .462 .233 113.168 222.178 7.024 13.200 .604 25.928 3.151	69 .482 .243 111.243 222.537 7.035 19.423 .589 .25.047 3.140	70 - 482 - 243 108 - 638 223 - 618 7 - 227 18 - 401 - 587 25 - 215 3 - 112	71 .000 .478 .241 102.095 227.291 7.185 13.557 .585 25.337 3.081	72 .000 .474 .239 235.159 255.700 8.083 18.739 .585 27.410 4.088
PAPAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVERALL ENERGY EFF CAP COST MILLION S CAPITAL COST, SYKWE COE CAPITAL COE FUEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75 291 000 472 465 393 206 295 551 272.054 322 8.601 793 19.053 586 586 710 23.243 584 3.931	76 • 030 • 481 • 243 252 • 718 257 • 853 0 • 151 1 8 • 430 • 588 ° 7 • 159 4 • 134	77 •300 •487 •245 243•019 254•502 •361 13•204 •585 27•151 4•087	78 • 070 • 485 • 245 232 • 140 271 • 452 8 • 582 13 • 237 • 584 27 • 453 4 • 036	79 • 900 • 480 • 242 222 • 330 273 • 273 5 • 829 1 3 • 477 • 584 27 • 890 3 • 985	t calculated

A.

1

•

 Table 6.9
 COMPINED CAS-STEAM TURBINE CYCLE
 SUMMARY FLANT RESULTS

 Continued
 Continued

. مەربىي

6-82

96 20.00 20.00 20.00 20.00
96 00.00 001.00 000.00 000.00 000.00 000.00
}

REPRODUCIENTITY OF THE ORIGINAL PAGE IS POOR

> t Ç

COMBINED CAS-STEAM TURBINE CYCLE COST OF ELECTRICITY.MILLS/KW.HR PARAMETRIC POINT NO. 1 Table 6.10

ACCOUNT RATE. LABOR RATE, STHR PERCENT 20.3 8.50 TOTAL SIRECT COSTS.S. INDIRECT COST.S 133274354. 17543013. 213507322 . 5 51.0 17083551. 14952517. PROF & OWNER COSTS.5 CONTINGENCY COST.5 15941989. 8.0 7.0 CONTINGENCY COST. SU3 TOTAL. ESCALATION COST. INTREST DURING CONT. TOTAL CAPITALIZATION. COST OF ELEC-CAPITAL COST OF ELEC-COPE COST OF ELEC-OP & MAIN TOTAL COST OF ELEC 14952517. 15755270. 270501100. 290486372. 13423980. 46637618. 48359732. 51942330. 352298812. 389066316. 14.61739. 15.59734 6.65191. 6.35191 1.70152. 1.70152. 23.7756. 20.25573 246799104. 39609173. 0 6 • 5 44114447. 330432720. 13.33173 6.85191 1.75152 10.0 18.5 0.0 23.17080 21.88513 ACCOUNT TOTAL DIRECT COSTS, INDIRECT COST, PROF & OWNER COSTS, CONTINGENCY COST, SUBJECT COST, CONTINUENCY COST. SUB TOTAL S ESCALATION COST. INTREST DURING CONS TOTAL CAPITALIZATIO COST OF ELEC-CAPITA COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-OP & M TOTAL COST OF ELEC ACCOUNT TOTAL DIRECT COSTS. INDIRECT COST.S PROF & OWNER COSTS. CONTINGENCY COST.S CONTINGENCY COST + S SUB TOTAL + S ESCALATION COST + S INTREST DURING CONS TOTAL CAPITALIZATIO COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-OP & M TOTAL COST OF ELEC

• 7 .0

23.33115

ACCOUNT	RATE	CONTINGENCY.	PERCENT	5 60	20, 00
TOTAL DIRECT COSTS, INDIRECT COSTS, PPOF & OWNER COSTS, CONTINGENCY COST, SUB TOTAL, ESCALATION COST, INTREST DURING CONST, TOTAL CAPITALIZATION, COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	$\begin{array}{c} -5.53\\ -6.2256467\\ 51.0 & 3099265\\ 2.0 & 182517\\ 29.0 & -1125233\\ -0.2634067\\ 5.5 & 4229030\\ 10.0 & 471005\\ -9 & 35279553\\ 18.0 & 14.23\\ -0 & 6.853\\ -0 & 1.702\\ -0 & 22.755\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 2 & 5.646714 \\ 3 & 3.526656 \\ 1.9651737 \\ 1.5735270 \\ 2.90486372 \\ 46337618 \\ 5.1542330 \\ 389056316 \\ 1.569734 \\ 6 \\ 5.95191 \\ 1.70152 \\ 2.4.25077 \end{array}$	225646714. 30952658. 18051737. 11232336. 285973436. 45313066. 51135365. 333021364. 15.45347 5.95151. 1.70152. 24.00690	225646714 309926556 18051737 45129342 319820444 57187622 428355248 17.22525 5.985191 1.70152 25.93593
CCOUNT	RATE	ESCALATION R	ATE. PERCEN	Τ	
TOTAL DIRECT COSTS. INDIRECT COST. PROF & OWNER COSTS. CONTINGENCY COSTS. SUB TOTAL. INTREST DURING CONST. TOTAL CAPITALIZATION. COST OF ELEC-CAPITAL COST OF ELEC-FVEL COST OF ELEC-FVEL COST OF ELEC-FVEL COST OF ELEC-FVEL	PERCENT 5.0C .0 22534671 51.C 305926 9.0 1905173 7.0 157952 0 29048637 0 3544932 13.0 5048522 0 37642092 13.0 15.197 0 6.055 0 1.791 0 23.740	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 3.60\\ 25645714.\\ 30952656.\\ 18051737.\\ 15795270.\\ 290496372.\\ 58037213.\\ 53425849.\\ 401939432.\\ 15.21915.\\ 6.85191.\\ 1.70152.\\ 24.77257\end{array}$	$\begin{array}{c} 10.60\\ 2.35646714\\ 30.992655\\ 18051737\\ 15795270\\ 290436372\\ 73765717\\ 55445363\\ 419697448\\ 16.93313\\ 6.85191\\ 1.70152\\ 25.48662 \end{array}$	•CC 3C952556 18051737. 15795270. 290486372. 45816237. 3263022508. 13.55853 6.85191 1.70152 22.12195
ACCOUNT	RATE	INT DURING C	ONST PERCEN	IT	
TOTAL CIRECT COSTS . INDIRECT COST . PROF 3 OWNER COSTS . CONTINGENCY COSTS . SUB TOTAL . ESSALATION COST INTREST DURING CONST . TOTAL CAPITALIZATION COST OF ELEC-CAPITAL COST OF ELEC-COP . MAIN	PERCENT 5.00 0 22564671 51.0 3099251 8.0 180517 7.0 1579521 0 29048633 5.5 46537631 15.0 3063621 9 36776323 18.0 14.83 0 5.951 0 5.951	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	10.00 225646714. 30992656. 18051737. 15795270. 290486372. 46637618. 5194233C. 399056316. 15.62734 5.535191 1.70152.	12.50 225646714. 30932656. 12051737. 15795270. 290426372. 46637618. 55623837. 402747924. 16.224934 6.95191. 1.70152.	15.00 225646714. 30992556. 18051737. 250486372. 46637618. 79550190. 16714176. 16.81283 6.95191. 1.70152.

23. 91735

10.60

225545714

13051737.

24.25077

15.00

250971952. 43857532.

332350284. 53360479.

53560475. 59429871. 445150628. 17.96013 6.85191

26.51356

24.99277

24.25077

20059757. 17561037.

233135532. E2862464.

394219472. E3291978.

704910111. 5280C2456 21.30289

E 85191 1.70152

25.35525

29 85631

23050922. 20163557.

ACCOUNT

TOTAL COST OF ELEC

Continued	PARAMETRIC POINT NO. 1
ACCOUNT TOTAL DIRECT COSTS.S INDIRECT COST.S PROF & OWNER COST.S CONTINGENCY COST.S SUB TOTAL.S ESCALATION COST.S INTREST DURING CONST.S TOTAL CAPITALIZATION.S COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	BATE, FIXED CHARGE RATE, PCT PERCLNT 16.00 14.40 18.00 21.60 25.00 • 225546714. 225545714. 225645714. 225646714. 225646714. • 13051737. 18051737. 18051737. 18051737. 18051737. 18051737. • 0 1351737. 18051737. 18051737. 18051737. 18051737. • 0 13755270. 15795270. 15795270. 15795270. 15795270. • 0 291496372. 290486372. 290495372. 290495372. 290495372. • 0 29142350. • 142330. 51942330. 51942330. 51942330. • 0 5142330. • 1942330. 51942330. 51942330. 51942330. • 0 51942330. • 1942330. 51942330. 51942330. 51942330. • 0 51942330. 51942330. 51942330. 51942330. 51942330. • 0 51942330. 51942330. 51942330. 51942330. 51942330. • 0 51942330. 51942330. 51942330. 51942330. 51942330. • 0
ACCOUNT TOTAL DIRECT COSTS. INDIRECT COSTS. PROF & OWNER COSTS. CONTINSENCY COST. SUB TOTAL. ESCALATION COST. INTREST DURING CONST. TOTAL CAPITALIZATION. COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL	PATE FUIL CCST \$/10**6 STU PERCENT .50 .35 1.50 2.50 1.02 .C 225646714 225646714 225646714 225646714 225646714 51.0 30392656 30992656 30992656 30932656 30932656 8.C 18651737 18051737 18051737 18051737 18051737 7.0 15795270 15795270 15795270 15795270 15795270 .C 290486372 290486372 290486372 290436372 .C 290486372 290486372 290486372 290436372 .C 51842330 1942330 51942330 51942330 .C 51842330 51942330 51942330 51942330 .C 51842330 51942330 51942330 51942330 51942330 .C 51842330 51942330 51942330 51942330 51942330 51942330 .C 51842330 51942330 51942330 51942330 51942330 51942330 .C 339056316 339056316 339056
ACCOUNT TOTAL DIRECT COSTS, \$ INDIRECT COST, \$ PROF & OWNER COSTS, \$ CONTINGENCY COST, \$ SUB TOTAL, \$ ESCALATION COST, \$ INTREST DURING CONST, \$ TOTAL CAPITALIZATION, \$ COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	RATE, CAPACITY FACTOR, PERCENT PERCENT 12.00 50.00 65.00 80.00 .1 225546714. 225645714. 1257407. 18051737.

6-84

Table 6.10 COMBINED GAS-STEAM TURBINE CYCLE COST OF ELECTRICITY.MILLS/KW.+FR

REFECTUOTING CONTRACTOR

Table 6.11 COMBINED BAS-STEAM TURBENE CYCLE COST OF ELECTRICITY, MILLS/XW.HR PARAMETRIC POINT NO. 2

에 가지 않아? 이 같은 것이 가지 않는 것이 같아.		and the second			and the second second second	•	
ACCOUNT TOTAL DIRECT COSTS. INDIRECT COST. PROF & CWER COSTS. SUB TOTAL. ESCALATION COST. INTREST DURING CONST. INTREST DURING CONST. COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-COP & MAIN TOTAL COST OF ELEC	RATE. PERCENT 51.8 8.0 5.0 5.5 10.0 18.0 .0 .0	$\begin{array}{c} 5.03\\ 5.2291633.\\ 3280751.\\ 4263331.\\ 3197498.\\ 64033211.\\ 7548763.\\ 8129175.\\ 79711149.\\ 6.53865.\\ 19.34223.\\ .59078.\\ 25.47155. \end{array}$	LABOR RA 9.50 25971965. 4647730. 4477759. 3353319. 63526533. 65926533. 55216557. 6.99257. 19.34223 .59070 25.92325	TE, \$/HR 10.60 58223480. 5735533. 4657878. 3493409. 7217C759. 3508084. 9162257. 39841100. 7.362657. 19.34223 .59078 27.30260	15.00 E2940960. 8201377. 5035272. 3776454. 79954502. 9425595. 10150423. 9530620. 8.162423. -59072. 28.09743.	21.57 £99C9214. 11755023. 5552785. 4194589. 51453210. 10781258. 1161C212. 13844580. 9.3386C 19.34223 .55078 29.27160	
ACCOUNT TOTAL DIRICT COSTS. INDIRECT COST. PROF & OWNER COSTS. CONTINGENCY COST. SUB TOTAL. ESCALATION COST. INTREST DURING CONST. TOTAL CAPITALIZATION. COST OF ELEC-ENTAL COST OF ELEC-ENTAL COST OF ELEC-ENTAL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	RATE. PERCENT 51.0 3.0 2C.0 0.0 10.0 13.0 .0 13.0 .0 .0	-5.0(53223483. 5795293. 457378. -291174. 5766177. 7753059. 9349179. 81868415. 5.71551 19.34223 .59073 26.64861	0 VTINSENCY. CO 78223493. 579593. 4657878. 6096252. 8718759. 5492363. 7.01238. 19.34223. 59378. 26.94588	PERCENT 6.00 53223430. 5795993. 4551878. 3493409. 72170753. 8508084. 9162257. 89841100. 7.36960 19.34223. .59078 27.30260	5.00 53223430. 5795593. 4557873. 2911174. 71538525. 9439446. 3038341. 55116311. 7.310153 19.314223 .59078 27.24315	20.00 58223430. 5795523. 4657878. 11644696. 80322047. 9469025. 10137093. 59988155. 8.20195 19.34223. .53078 28.13496	
ACCOUNT TOTAL DIRECT COSTS. INDIRECT COSTS. PROF & OWNER COSTS. SUB TOTAL. ESCALATION COST. INTREST DURING CONST. TOTAL CAPITALIZATION. COST OF ELEC-CAPITAL COST OF ELEC-CUSL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC.	RATE. DERCENT 51.0 50.0 50.0 0.0 10.0 10.0 10.0 18.0 .0 .0 .0	5.03 5822349C. 5795993. 4657873. 3493409. 72170755. 549551. 87658876. 87638285. 7.1285. 19.34223 .59078 27.12191	SCALATION R 5.5C 822349C. 5795993. 4657878. 3493499. 72170755. 8508084. 9162257. 984110. 7.36362 19.34223 .59078 27.30250	ATE, PERCEN 8.00 58223466. 5795993. 4657878. 3493409. 72170759. 10545265. 9357569. 92073593. 7.55273 19.34223. .59078. 27.48573	T 10.00 58223496. 575593. 493409. 72170759. 13304975. 95096625. 7.86251. 19.34223 .59079. 27.73371	.DC 5735993. 4657978. 3493409. 72170759. 9338226. 30508985. 6508985. 59078. 26.53710	
ACCOUNT IOTAL DIRECT COSTS, \$ INDIRECT COST, \$ PROF & OWNER COSTS, \$ CONTINGENCY COSI, \$ SUB TOTAL, \$ ESCALATION COST, \$ INTREST DURING CONST, \$ TOTAL CAPITALIZATION, \$ COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-FUE MAIN TOTAL COST OF ELEC	RATE, PERCENT 51.0 6.0 6.5 15.0 18.0 .0 0.0 0.0	I 6.00 53223460. 579593. 4557378. 3493409. 7170759. 8508084. 5453466. 86132309. 7.65537 15.34223 .59078 26.92837	NT DURING C 3.00 13223450. 5795993. 4657873. 3493409. 72170759. 8508024. 7300519. 5797936G. 7.21588 19.34223 .59073 27.14289	ONST PERCEN 10.00 58223400. 5795953. 46578769. 72170759. 8508024. 9162257. 93841100. 7.36960 19.34223 .59078 27.30260	T 12.50 58223450. 5735993. 4657978. 3493409. 721759. 8508084. 11510116. 92188559. 7.55219 19.534223. .59079. 27.49520	15.00 58223480 5795393. 4657378. 3493409. 72170759. 8508024. 13881055. 54559898. 15.34223 7.75568 15.34223 .59078 27.69968	

6-85

......

COMBINED GASESTEAM TURBINE CYCLE COST OF ELECTRICITY+MILLS/KW+HR Table 6.11 PARAMETRIC POINT NO. 2 Continued

44

25.07 58223480.

5795993.

4657878.

3493409.

72170759.

3508084. \$162257.

19.34223 .52078 30.15355

3.12 58223480. 5795993.

4657378.

3493409

72170759. 8508084. 9162257.

£38411CD. 7.36960 23.21067

.53078

31.17105

39841100. 10.23555

ACCOUNT RATE FIXED CHARGE RATE. PCT 21.60 58223480. 5795993. 18.00 58223480. 5795993. 13.03 58223480. 5795993. 4657878. 14.40 F822348C. 5795933. 4657878. PERCENT TOTAL DIRECT COSTS. INDIRECT COST. PROF & OWNER COSTS. CONTINGENCY COST. .C 51.0 8.0 4657878. 4657878. 5.0 3493409. 3493439. 3493409. 3493409. CONTINGENCY COST.S SUB TOTALS ESCALATION COST.S INTREST DURING CONST.S TOTAL CAPITALIZATION.S COST OF ELEC-CAPITAL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC 5.5 72170759. 72170759. 72170759. 3508084 S162257 8509064 9162257 3503084 9162257 8538384 9162257 10.0 33341100. 7.36960 13.34223 .59078 27.30260 33341100. 4.69422 13.34223 .59078 24.02723 39341100. 8.84352 19.34223 59078 23.77652 25.0 3341100. 5.89568 19.34223 59078 25.82953 С. •0 FUEL COST: \$/10++6 BTU ACCOUNT RATER 1.5C 55223483. 5795993. 4.00 53223495 5795993 2.08 53223480. 5795593. 4557873. 3493409. PERCENT 2.60 F3223493. TOTAL DIRECT COSTS, S INDIRECT COST, S PROF & DWNER COSTS, S CONTINGENCY COST, S . • I` 5795993. 51.0 4657873. 3453409. 4557375. 3493409 4657878. 3.0 6.0 3493409. 3453409. 72170755. 8508084. 9162257. 89841100. 7.36950 19.34223 59278 27.30260 3493409. 72170759. 8528084. 9152257. 83841100. 7.36950 29.75727 59578 CONTINGENCT COST.S SUB TOTAL.S ESCALATION COST.S INTREST DURING CONST.S TOTAL CAPITALIZATION.S COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-FUEL 72170759. 8508084. 9152257. .J 6.5 72170759. 6508084. 9152257 10.0 89841100. 7.36955 .0 89641100. 7.35360 11.15893 .53070 19.11935 18.0 15.47379 0.0 37.71765 23 43416

ACCOUNT	RATE		CAFACITY FAI	TOR. PERCEN	T	
	PERCENT	12.03	45.00	50.00	55.00	30.00
TOTAL DIRECT COSTS S	•0	56223483.	58223480.	58223480	58223480.	E822348C.
INDIRECT COST.S	51.0	5795993.	5795953.	5735953.	5795993.	5735993.
PROF & GWNER COSTS .	8.C.	4657878.	4657878.	4657878	4657878.	4657878.
CONTINGENCY COST.5	5.0	3493409.	3493409.	3493409.	3493409	3493409.
SUB TOTAL .S	• 0	72170759.	72170755.	72170759.	72170759.	72170759.
ESCALATION COST.S	5.5	3503084.	8508034.	3503084	3508084.	8508084
INTREST DURING CONST.S	10.0	9162257.	9162257.	2162257.	9162257.	9162257 .
TOTAL CAPITALIZATION.S	• 0	39941100.	39841100.	39841100.	39841100.	39841100.
COST OF ELEC-CAPITAL	18.0	39,91866	10.64498	9.58048	7.36960	5.98780
COST OF ELEC-FUEL	• 0	19.34223	19.34223	13.34223	19.34223	19.34223
COST OF ELEC-OP & MAIN	.0	1.84584	•75253	.70210	.59078	.51617
TOTAL COST OF ELEC	.0	51,13673	32.74313	23.52490	27.30250	25.94619

Curve 682432-A 36 Distillate Fuel From Coal Capacity Factor 0. 65 20 34 20 1800 9 Mills/ kWh 32 Compressor Pressure Ratio Cost of Electricity, 30 2000 16 -Turbine Inlet Temperature 6 28 2200°F Steam Cycle 2400psig/ 1000 °F/ 1000 °f 1250 psig/ 950 F 2600°F 26 One IP Steam Induction 24 L 200 260 280 220 240 300 320 340 Installed Capital Cost, \$/kW

Fig. 6. 32-Effect of gas turbine inlet temperature and compressor pressure ratio on cost of electricity

Curve 682345-A

Fig. 6. 33-Comparison of cost of electricity with reheat and nonreheat steam bottoming cycles

At the higher gas turbine inlet temperature, the reheat steam bottomed cycle enjoys a COE advantage. The comparison of COE obtained with both reheat and nonreheat steam cycles at various turbine inlet temperatures is examined in greater detail in Figure 6.33. At each turbine inlet temperature, the optimum value of the compressor pressure ratio has been selected for display in this curve. A crossover point of approximately 1644°K (2500°F) turbine inlet temperature is indicated at which the costs of electricity using the nonreheat and reheat steam bottoming cycles are equivalent.

Over the full range of gas turbine firing temperatures plotted on Figure 6.33 the greatest difference in COE between the cycles with reheat and nonreheat steam if 0.1 mills/MJ (0.35 mills/kWh) or 1.2% occurring at 1255°K (1800°F).

For all practical purposes, the COE from the cycles with reheat and nonreheat steam is essentially equal within the accuracy of the study.

The results of a comparison of COE obtained with various steam bottoming cycle arrangements are shown in Figure 6.34. This grouping compares reheat and nonreheat steam cycles with throttle pressures ranging from 8.618 to 16.547 MPa (1250 to 2400 psi) gauge and inductions at the reheater and crossover ducts. All these results were obtained using a gas turbine with 1478°K (2200°F) turbine inlet temperature, compressor pressure ratio of 12 to 1, and using air-cooled vanes and blades. With this set of gas turbine conditions, the 9.653 MPa (1450 psi) gauge steam cycle arrangements (both reheat and nonreheat) have a lower COE than the 12.411 to 16.547 MPa (1800 or 2400 psi) gauge cycles. At a higher gas turbine inlet temperature, the higher throttle pressure reheat steam cycle shows an advantage, as illustrated by the bar chart of Figure 6.35.

A detailed look at the effect of steam induction upon the COE has been performed in conjunction with the 16.547 MPa/811°K/811°K (2400 psig/1000°F/1000°F) steam bottomed combined cycle. The use of steam inductions at the reheat and crossover points was investigated individually and collectively. Results of these calculations are shown in

LAR AN SHAFTY.

-

Figure 6.36. Increasing the use of induction in these investigations resulted in a reduction in the COE. The greatest improvement was seen to come from the change from no induction to one induction, with little net difference observed between the use of a single induction at the reheat point or the crossover point. A smaller additional improvement in COE was observed when a second steam induction was added.

It should be appreciated that the differences in COE among the induction alternatives are quite small; and until confirmed by additional studies, the order of merit of the various systems should be regarded as just trends.

The use of supplementary firing of the heat recovery steam generator has been investigated in conjunction with both reheat and nonreheat steam bottoming cycles. In addition to the case of no supplementary firing, three levels of additional firing were used to increase the temperature of the gas turbine exhaust products entering the heat recovvery boiler. The first level firing raised the exhaust products temperature to approximately 1033°K (1400°F). The second level achieved temperatures of approximately 1587°K (2400°F); and for the third level, a near stoichiometric temperature of approximately 2061°K (3250°F) was used. For both the reheat and nonreheat cases, the steam cycles were topped by a 1478°K (2200°F) turbine/inlet temperature gas turbine at a 12-to-1 compressor pressure ratio, with air-cooled vanes and blades burning clean distillate fuel from coal. The results of the analysis, shown in Figure 6.37, indicate that additional supplementary firing increases the COE for both types of steam cycle, with a greater penalty observed in conjunction with the nonreheat arrangement.

Considerable attention has been focused upon the effect of the steam cycle heat rejection means upon COE. Three different systems were investigated, including the dry tower and wet tower systems, in which heat is rejected to the atmosphere; and the more conventional once-through systems, in which heat is rejected to a body of water as a heat sink. Again, both nonreheat and reheat steam bottoming cycles were investigated.

6-94

L LEA HUNNALL Y

The results shown in Figure 6.38 indicate that, compared with the oncethrough cooling, the COE with the dry tower and wet tower, are approximately 9 and 4% higher, respectively.

The effect of fuel preparation on the COE has been investigated as a comparison between a combined-cycle plant with an integrated gasification system and a similar combined cycle firing distillate from coal. Both cycles utilize a 1478°K (2200°F) turbine inlet temperature gas turbine at a 12-to-1 pressure ratio with air-cooled vanes and blades. The COE results have been plotted as a function of capacity factor for each arrangement in Figure 6.39. The results show that for capacity factors greater than approximately 0.45, the integrated gasification system is economically superior under the assumption of a liquid fuel price of \$2.46/GJ ($$2.60/10^6$ Btu). At an 80% capacity factor, the integrated gasification system results in a COE approximately 30% lower than the counterpart combined cycle burning distillate from coal.

For each parametric point the natural resource requirements have been estimated. These consist of coal, sorbent (for gasification systems), water for heat rejection, gasifier process steam, condensate makeup, waste slurry handling, and scrubber waste, as well as land usage for the main plant, disposal, and access railroad. The results of these calculations for all parametric points investigated are summarized in Table 6.12.

6.7 Conclusions and Recommendations

6.7.1 Conclusions

The gas-steam combined-cycle system, in comparison with other ECAS Task I energy conversion systems, is attractive for intermediate and higher capacity factor operation.

Several parameters affect conclusions regarding optimization of the combined-cycle system with respect to efficiency and COE. The more important of these include: gas turbine inlet temperature and compressor

Curve 682433-A 2200 9F T_{it}, 12:1 Gas Turbine; Dist From Coal Fuel 0. 65 Capacity Factor 30 Condenser Pressures Dry Tower Dry Tower 9in HgAbs Wet Tower 2in HgAbs Cost of Electricity, Mills/ kWh Once Thru 1.51n Hg Abs 29 28 et Tower 27 Steam Cycle 2400psig/ 1000F/ 1000 1250psig/950F 26 25 270 260 250 230 240 220 Installed Capital Cost, \$/ kW

a ward ar analy in

Fig. 6. 38-Effect of steam cycle heat rejection method on cost of electricity

6-97

a war an sharin to

Ś

. 0

E.

 \Diamond

6

A WAR AN FIRNEY. WI

Ð

đ.,

Table 6.12	COMBINED	EAS-STE	AM TUPBI	NE CYCLE	NATUR	AL RESOU	RCE REQU	IRFMENTS	
PAPAMETRIC POIN COAL, LB/KW-47 SORBANT UR SEEL OTAL WATER, SA COULING KATE GASIFIER POO CGNDENSATE WASTE HANDLI SCRUBBER WASS NOX SUPPRESS TOTAL LAND ACRE MAIN PLANT LAND FOR ACC	AT ULB/XW-HR L/XW-HR R CESS 423 ARE UP NS SLURRY TE WATER ION S/IDCMWE ID ESS R	1 •74313 •39319 •537 •4230 •003300 •0514 •0459 •7000 •554 •55 •52•47 20•33	2 1.35739 .C0000 .437 .424 .J000 .0034 .00000 .00000 .J0700 .36.56 12.37 .000 23.59	3 1.35055 .25056 .495 .31000 .010000 .00000 .000000 .000000 .000000 .00000000	4 1.32321 .0000 .453 .0352 .00352 .00000 .00000 .0000 .0000 .00000 .0000 .0000 .0000 .0000	5 1.32431 .00000 .452 .448 .00354 .00354 .00000 .00000 .00000 .2241 11.84 .00 20.57	not calculated m	7 1.34305 .CCCCC .447 .3000 .00343 .00000 .00000 .00000 .00000 .00000 .000000 .00000 .00000 .00000 .00000 .00000 .0000	8 1.36591 •CCCCC •464 •0000 •CC334 •0000 •CCC34 •0000 •CCC34 •0000 •CCC34 •0000 •CCC234 •0000 •CCC234 •0000 •CCCCC •0000 •CCCCC •0000 •CCCCC •0000 •CCCCC •0000 •CCCCC •0000 •CCCCC •0000 •CCCCC •0000 •CCCCC •0000 •CCCCC •0000 •CCCCC •0000 •CCCCC •0000 •CCCCC •0000 •CCCCCC •0000 •CCCCCC •0000 •CCCCCC •0000 •CCCCCC •0000 •CCCCCC •0000 •CCCCCC •0000 •CCCCCC •0000 •CCCCCC •0000 •CCCCCC •CCCCC •CCCCC •CCCCC •CCCCC •CCCCC •CCCCC •CCCCC •CCCCC •CCCCCC •CCCCCC •CCCCCCCC
ARAMETRIC POIN GAL, LB/KW-HR GAL, LB/KW-HR GASANT OR SEED OTAL WATER, GA CODLINS WATE GASIFIEK PRC CONDENSATE M WASTE HANDLI SCRUBBER WAS NOX SUPPRESS OTAL LAND ACRE MAIN PLANT DISPOSAL LAN LAND FOR ACC	T L3/KW-4R R CESS H2G AKE JP NG SLURRY TE WATER ION S/IJJMWE D ESS RR	9 1.35616 .00000 .00000 .00000 .00000 33.07 12.01 .00 21.06	10 1.36120 .459 .459 .60000 .00341 .0000 30000 .00000 3.17 12.04 .00 21.13	11 1.37675 .93303 .461 .457 .00000 .37334 .7000 .050000 .050000 .050000 .050000 .050000 .050000 .050000 .050000 .050000 .050000000000	12 1.35272 .0000 .454 .0000 .00341 .0000 .0000 3.000 3.000 11.99 .00 21.00	13 1.40589 .00300 .343 .340 .00314 .000000 .000000 .000000 .00000 .00000 .000000 .000000 .0000000 .0000000 .0000000 .00000000	14 1.34417 .50300 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 11.92 .00 .00 .00	15 1.45197 .00000 .CC3 .000 .CCCCC .00299 .CCCCC .00000 .CCCCC .00000 .CCCCC .00000 .CCCCC .00050 .CCCCC .0050 .CCCCC .0050 .CCCCC .00500 .CCCCC .00000 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCC .00500 .CCCCCC .00500 .CCCCCC .00500 .CCCCCC .000000 .CCCCCC .00000 .CCCCCCC .00000 .CCCCCC .00000 .CCCCCC .00000 .CCCCCC .00000 .CCCCCC .0000 .CCCCCC .00000 .CCCCCCC .00000 .0000	16 1.32C43 .00000 .451 .447 .00356 .00356 .00000 .00000 .00000 32.33 11.82 .00 2C.51
ARAMETRIC POIN DAL, L5/KW-HR ORBANT OR SEED DIAL WATER, JA COOLING WATER, JA COOLING WATER GASIFIER PRO CONDENSATE M WASTE HANDLI SCRUBBER WAS NOX SUPPRESS DTAL LAND ACRE MAIN PLANT DISPOSAL LAN LAND FOR ACC	T +LB/KW-HR L/XW-HR R CESS 423 AKE UP N3 SLURRY TE WATER ION S/100MWE D ESS RR	17 1.35354 .CCOCO 1.025 1.C20 .0333 .D0491 .3337 .D0000 .3330 .00000 .3330 .00000 .3330 .00000 .3330 .00000 .3330 .00000 .3330 .00000 .3335 .0000 .3335 .0000 .3335 .0000 .000000 .000000 .000000 .00000 .00000 .000000 .000000 .000000 .000000 .000000 .000000 .00000000	18 1.43299 .CCCCC .S52 .G55 .JJJJO .CCCCC .DCCC .JDJO .CCCCCC .JDJO .CCCCCC .JDJO	19 1,47720 -000000 -733 -726 -01000 -0745 -10000 -07050 -00000 42-86 17.94 -0000 32.92	20 1.35342 .CC000 .489 .477 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .000 .000 .000 .000 .000 .000 .000 .000 .00000 .0000000 .00000 .0000 .0000 .0000 .0000 .0000 .0000	21 1.37245 .00000 .488 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .0000000 .00000000	22 1.35389 .COCCC .484 .20300 .CO331 .0009 .COCCS .0009 .COCCS .0009 .COCCS .0009 .COCCS .0009 .COCCS .0009 .COCCS .0009 .COCCS .0009 .COCCS .0009 .COCCS .0009 .COCCS .0009 .COCCS .0009 .COCSS .COCSS .CO	23 1.37040 .CCCCC .490 .496 .700000 .70000 .70000 .70000 .70000 .70000 .70000 .70000 .70000 .70000 .70000 .70000 .70000 .70000 .70000 .70000 .700000 .700000 .700000 .700000 .7000000 .70000000000	24 1.36946 .CDCCC .488 .85 .0000 .CDCOC .0000 .CDCOC .0000 35.61 12.99 .DC 23.63
IRAMETRIC POIN DAL, LB/KW-HR DRJANT OR SED DTAL WATER, GA CODLING WATE GASIFIER PRO CONDENSATE M WASTE HANDII SCRUBBER WAS NOX SUPPRESS DTAL LAND ACRE MAIN PLANT DISPOSAL LAN	T LB/KW-HR R CESS H20 AKE UP NG SLURRY TS WATER ION S/100NWE 2 CCC DD	25 1.36474 .0000 .486 .592 .00335 .0000 .00000 .00000 35.50 12.96 .29	/ 26 1.38409 .0000 .448 .445 .00000 .00326 .00000 .00000 35.36 13.07	27 1.35001 .003 .000 .0000 .00337 .0000 .00337 .0000 12.85 12.85 .000	23 1.46957 .003 .003 .0000 .0223 .0000 .0023 .0000 7000 .0000 74.45 13.58	29 1.37254 .0000 .498 .498 .0000 .00332 .0000 .00000 .00000 36.59 13.01 .00	30 1.41153 .0000 .576 .571 .0000 .00440 .0000 .00440 .0000 .0040 .0000 .0040 .0000 .0040 .0000 .0040 .0000 .0040 .0000 .0040 .0000 .0040 .0000 .0040 .0000 .0040 .0000 .0040 .0000 .0000 .0040 .0000 .0000 .0040 .00000 .0000 .0040 .00000 .0040 .000000 .00000 .00000 .00000 .00000 .00000 .000000 .00000 .00000 .000000 .000000 .000000 .0000000 .00000000	31 1.58353 .30000 .820 .913 .00631 .00651 .00600 .00000 .0000 .0000 .0000 .0000 .0000 .00000 .0000	32 .00000 .931 .924 .0000 .00718 .00000 .00000 .0000 .0000 .0000 .00000 .0000 .0000 .0000 .0

1. d⁴ 1.2

5

man and a second

1 1

6-99

Table 6.12 Continued	COMBINED	CAS-STEA	M TURZIN	E CYCLE	NATURA	L RESCUE	ICF RCOU	IR CMENTS	
PAPAMETRIC POIN COAL LS/KH-4R SORBANI OR SEED TOIAL MATER, 341 COCLING LATE GASIFIER PROC CONDENSATE M HASTE HANDLI SCPUBBER MAS NOX SUPPRESSI	LS/KW-HR //XH-42 2535 423 MKLUP MS SLURRY IN AALL ON	33 •50760 •559 •554 •7777 •60360 •7777 •60360 •77777 •77777	34 •COGCC •538 •535 •535 •535 •535 •535 •535 •535	35 1.55751 .0000 .532 .525 .0000 .0000 .0000 .0000	26 1.52595 .00000 .533 .537 .2000 .00229 .00000 .00000 .00000 .00000	37 1.42502 000006 507 503 00000 00387 00000 00000	38 1.42775 .56005 .495 .495 .495 .495 .0000 .0000 .00000 .00000	39 1.45534 .CCCCC .432 .485 .30300 .CC275 .3003 .CCCCC .30308	40 1.49332 .CCCOC .495 .492 .0000 .CC25C .CC5C .CCCC .5000
NATA PLANT NATA PLANT DISPOSAL LANG LAYD FOR ACCO	55 99	39.28 14.23 .00 .24.93	39.55 15.23 .EQ 24.32	15.37 .CD 23.52	44.55 17.72 .DD 25.33	35.76 12.59 .00 23.07	35.84 13.39 .00 22.44	35.84 14.20 .CC 21.54	29.08 19.11 .00 23.99
PARAMETRIC POINT COAL. LB/KW-HR SOPBANT OR SEED TOTAL WATER SAL COOLING WATER SASIFIER PRO CONDENSATE MA WASTE HANDLIN SCRUBBER WAST NOX SUPPRESS TOTAL LAND ADRES MAIN PLANT DISPOSAL LAND LAND FOR ACCU	LB/XW-47 JKW-HR JKES HPD VC SLUSRY E AATIR CAL VIDTAWE SS RP	31 1.36114 0.30303 .463 .60566 0.37499 .0606 .30393 .00560 33.24 11.50 .1.50 .1.75	42 1.35653 .JJ3J0 .457 .457 .457 .0000 .JJ3J6 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .000000 .00000 .00000 .00000 .0000000 .000000 .00000 .00000000	43 1.37291 .457 .457 .7294 .7294 .7294 .7299 .7294 .7209 .33.05 12.65 .2090 .25.40	\$4 1.41536 •JJJJJ •466 •457 •CC000 •J9253 •CC000 •J9307 •CC000 35.54 13.31 •JJ 22.22	45 1.31662 .93000 .449 .449 .00000 .00200 .00200 .0000 .0000 .00000000	•5 1.30491 •9900 •427 •424 •0000 •00057 •0000 •0000 •0000 31.03 15.97 •00 20.11	\$7 1.32464 99990 423 420 .423 .420 .70505 .50505 30.34 11.46 19.43	98 1-35384 - J0306 - 425 - 425 - 555 - 555
PARAMETRIC POINT COAL, L3/X4-4R SORBANT OR SEED TOTAL WATER, BAL COULING WATER SASIFIER PROC CONDENSATE MA WASTE HANDIT NOK SUPPRESSI TOTAL LAND ACRES MAIN PLANT DISPOSAL LAND LAND FOR ACCE	LE/KW-HP /XW-HR /XW-HR TSS 421 WE UP SLURRY E WATER ON S/10CMWE SS 79	42 1.23577 500500 442 437 03530 60432 03030 60500 30030 30034 42 20.42	50 25521 1 200000 416 426 10000 00000 00000 00000 00000 29.61 10.15 10.15 10.45	51 • 27996 • 5960 • 398 • 398 • 398 • 398 • 398 • 00331 • 2000 • 0000 • 27•35 13•53 • 300 • 20 • 29 • 35 • 13•53 • 50 • 60 • 7 • 60 • 60 • 7 • 7 • 60 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7	52 • 66000 • 339 • 339 • 01009 • 0000 • 00000 • 0000 • 0000 • 0000 • 0000 • 0000 • 0000 •	53 1.51174 .00000 .574 .571 .00053 .00553 .00500 .00000 46.59 15.35 .00 .00 .00 .00 .00 .00 .00 .0	54 1.50613 .00000 .533 .00000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .000000 .000000 .00000 .000000 .0000000 .000000 .00000000	55 1.54936 .6.000 .515 .00000 .00000 .00000 .00000 .0000 .0000 .0000 .0000 .0000	56 1.60189 .CCCC .514 .0000 .CC241 .0000 .CCCC .90000 45.28 18.86 .CC 26.41
PARAMETRIC POINT COAL, LB/KW-HR SORBANT OR SEED. TOTAL WATER, GAL CODLING WATER GASIFIER PROC CONDENSATE MA WASTE HANDLIN SCRUBBER WAST NOX SUPPESSI TOTAL LAND ACRES MAIN PLANT DISPOSAL LAND LANE FOR ACCE	L3/44-17 /KW-HR ESS H20 KE JP C SLURRY E WATER CON /133MWE SS RR	57 1.44608 .0090 .547 .0000 .0000 39.54 13.73 .00 25.91	53 • 42565 • J0000 • 516 • 60000 • 00317 • 00000 • 00000 36• 30 14•39 • 00 22•42	59 • 44908 • 00009 • 494 • 491 • 00000 • 00000 • 00000 • 39.85 15 • 22 • 00 • 24 • 63	53 1.48707 .33933 .487 .487 .487 .0000 .39255 .00000 .3035 .00000 .3.34 16.15 .09 27.19	51 • 39527 • 531 • 531 • 531 • 531 • 6000 • 00395 • 6000 • 00000 • 39•30 12•55 • 00 26•75	52 1.38192 .470 .470 .470 .0000 .0000 .000000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .000000 .000000 .00000 .000000 .00000 .00000 .000000 .0000000 .0000000 .00000000	53 1.41(E7 .00000 .462 .CCCC .00271 .CCCC .00000 .CCCC .00000 .CCCC .00000 .CCCC .00000 .CCCC .000000 .0000000 .000000 .000000 .00000000	54 •.364C4 •.30000 •.521 •.527 •.CC00 •.00405 •.00000 •.00000 •.00000 •.00000 •.00000 •.00000 •.00000 •.00000 •.00000 •.00000 •.00000 •.000000000 •.00000 •.00000 •.0000000000

REPRODUCIESTICTY OF THE ORIGINAL PACE IS FORM

1.385

 \cap

đ

SP Yr

L LTRA JU BHAVIII. VII

1. 1. 1. A. W.

Ο

1.16
1

	No. 1								1.1
112			1.6						
- Q				1.1.1.2					
many en repris	C THE REPORT OF A	or iphyser or	The second second second	 > 1.5 (1978) 	SET		No	NARY ALC: MINARY AND	And And Address of the Annual States
		- 18 M	1.1.1.1	1.1.1.1.1.1	1.0			1.3.5	1 A A A
1 A A A A		그 끓시는 눈을	1977) (M. 1977)	N. 491.	Sec. 21.	1.1.1	A. 12. 18. 41 St.		
	- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	1973 - M.	1 C C	1.4	S	- S. 197	1425	98 F M L -	
					a si ku sas		19 (14 (Th) 1	Y.	
	1 N N N N N					يتفقه سيبرغ	And Thinkson	o had a set of the set	and the second s
	and the second sec	and the second second			A	1. C. A. 197. B	S. L. S. S. San annual S. S. S.	the standard of the other states	a state of the second

C

÷.,

1

.

Table 6.12 COMBINED	CAS-STEAM TUPBI	NE CYCLE	NATURAL RESO	JRCE REQUI	REMENTS	
Continued PARAMETRIC POINT COAL: L3/KJ-4R SORBANI OR SEED.LE/KW-HR TOTAL WATER, 3AL/KJ-4R COCLING WATER 9ASIFIER PROCESS 423 CONDENSATE MAKE UP. WASTE HANDLIN3 SLURRY SCRUBSER WASTE WATEP NOX SUPPRESSION TOTAL LAND ACRES/ICCMWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS 3R	65 66 1.32970 1.33257 .C0000 .C0000 .474 .451 .471 .448 .0000 .0000 .0030 .0000 .0030 .0000 .00346 .C0210 .00000 .C0000 .00000 .C0000 .00000 .C0000 .00000 .C0000 .00000 .C0000 .00000 .C00000 .000000 .C000000 .00000000 .C000000000 .000000000000000000000000000000000000	67 1.37334 1. .90000 .443 .446 .3000 .90235 .00000 .00000 .00330 .00000 .03330 .0000 .03330 .000 .000 .03330 .000 .000 .03330 .0000 .000 .000 .0000 .0000 .0000 .0000	68 69 35735 1.30213 .6C60C .0000 .547 .45 .643 .46 .3333 .0300 .6C408 .0035 .3339 .000 .6C600 .0000 .33959 .0000 39.54 32.93 10.93 11.10 .CC .60 .23.55 .21.93	70 1.30153 1 .70000 .442 .435 .00000 .0000000 .00000 .00000000	71 .31227 .05000 .423 .3000 .0200 .0000 .0000 .00000 32.07 11.83 .00 20.24	72 .32437 .C0CGC .451 .0000 .C0411 .0000 .CCECC .00000 .CCECC .00000 .CCECC .00000 .CCECC .00000 .CCECC .00000 .CCECC .00000 .CCECCC .000000 .00000 .000000 .00000 .000000 .00000 .000000 .00000 .00000 .00000 .00000 .000000 .00000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .0000000 .00000000
PARAMETRIC POINT COAL, LB/K W-HR SORBANT OR SEEJ,L3/XW-HR COOLING WATER GASIFIER PROCESS H20 CONDENSATE MAKE JP WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/13JMWE MAIN PLANT DISPOSAL LANJ LAND FOR ACCESS RR	73 74 1.31362 1.32624 .3030 .0330 .431 .430 .423 .427 .60664 .6060 .3030 .2030 .60664 .6060 .3030 .2030 .60606 .60606 .3030 .2030 .60006 .0000 .11.31 11.85 11.31 11.85 .00 .20.60	75 1.34737 1.34757 1.34757 1.34757 1.34757 1.34757 1.34757 1.34757 1.34757 1.34757 1.34757 1.34757 1.34757 1.34757 1.347577 1.347577 1.347577 1.3475777 1.3475777 1.347577777777777777777777777777777777777	75 77 30260 1-2866 30303 50304 439 411 435 412 50000 0000 37413 9034 00000 0000 00000 0000 30495 30.65 10.45 10.88 00 00 20.41 15.75	73 .29323 .00300 .411 .403 .00500 .30293 .00500 .309000 .309000 .3090000 .30900000000000000000000000000000000000	73 1.30596 .00200 .413 .60000 .00269 .00269 .00000 .66666 30.10 11.83 .00 18.27	C8 Not calculated
PAPAMETRIC POINT CDAL, L9/KW-4R SCRBANT OR SEED.LE/KW-HR TOTAL WATER, BAL/KA-4R COOLING WATER GASIFIER PROCESS 420 CONDENSATE MAKE UP WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/100MWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS R	21 82 Not calculated	83 1.	54 85 -)53\$7 -CC000 -453 -449 -)0000 -C0333 -0000 -C0000 -0000 28-48 9-07 -23-41	25	87	6
PARAMETRIC POINT COAL, LB/KN-HR SORBANT OR SEED.L3/KW-HR TOTAL WATER, GAL/KW-HR COOLIND WATER GASIFIER PROCESS H20 CONDENSATE MAKE UP. WASTE HANDLING SLURRY SCRUBBER WASTE JATER NOX SUPPRESSION TOTAL LAND ACRES/IDIMWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	39 97 1.34464 1.34355 .3332 .33630 .426 .472 .426 .472 .426 .472 .53 .6000 .6000 .0000 .0000 .3345 .6000 .0000 .3345 .6000 .0000 .3345 .6000 .0000 .37.11 .37.33 .16.23 .16.22 .30 .20.88 .20.86	91 1.41372 .3000 .367 .353 .0000 .0000 .00000 .00000 .00000 .33.77 16.71 .00 .00 .00 .00000 .0000 .00000 .0000 .0000 .000000 .00000 .0000 .0000 .00000 .00000	32 93 -0000 -000 -000 -000 -000 -000 -000 -000 -0000 -0000 -0000 -0000 -0000 -0000 -00000 -000 -000 -000 -00 -00	34 30002- 00000- 0000- 0000- 00000- 00000- 000- 00-	95 .02000 .0000 .0000 .00000 .00000 .00000 .00000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000	36 000000- 00000- 0000- 00000- 00000- 00000- 000- 00- 00- 00- 00-

BERKPT PRINTS

6-100

iz state ju enatem for

pressure ratio, steam cycle nominal conditions, the use of steam induction, supplementary heat recovery steam generator firing, heat rejection means, and the use of integrated low-Btu coal gasifications.

As gas turbine inlet temperatures are increased, the resultant thermodynamic efficiencies are increased and the COE decreases. Further, from the viewpoint of both efficiency and COE, the optimum gas turbine compressor pressure ratios generally increase with higher turbine inlet temperatures. For the range of turbine inlet temperatures investigated, 1255 to 1700°K (1800 to 2600°F), it was determined that for best combinedcycle efficiency, and using convection impingement air-cooled was turbine blading, the optimum compressor pressure ratio lies in the range of 10 to 16.

The differences in COE obtained with varying steam cycle configurations and nominal throttle steam conditions are small and in many cases less than the uncertainties inherent in such a study. It was observed, however, that at the lower gas turbine inlet temperatures, the lower throttle pressure nonreheat and reheat steam cycles yielded a lower COE. For the lower throttle pressure reheat steam bottoming plants, for example 9.997 MPa/811°K/811°K (1450 psig/1000°F/1000°F), no parametric optimizations were performed. Further investigation of these cycles and comparison with the 8.618 MPa/783°K (1250 psig/950°F) bottoming cycle would be quite useful. At the higher gas turbine inlet temperatures, the higher pressure reheat steam cycles showed the lower COE with the gas turbine inlet temperature at which the two types become equal being approximately 1589°K (2400°F).

The use of steam induction generally results in a high cycle efficiency and a lower COE. In the case where multiple induction was assumed, in conjunction with a reheat steam cycle, the use of the first induction is most significant in lowering the overall COE.

The use of supplementary firing in the heat recovery steam generator results in a higher COE than for an unfired steam generator arrangement. The 16.547 MPa/811°K/811°K (2400 psig/1000°F/1000°F) reheat steam cycle arrangement is less sensitive to an increased COE with supplementary firing than the 8.618 MPa/783°K (1250 psig/950°F) nonreheat steam cycle.

Heat rejection to the atmosphere by means of wet and dry cooling towers results in a higher COE than does the use of a once-through cooling system. The most significant increase occurs in conjunction with the use of dry cooling towers; the COE is nearly 9% higher with this arrangement than with the once-through method.

The use of integrated low-Btu coal gasification offers superior COE performance for base-load duty, as compared with a coal-derived distillate fueled combined cycle. Based on an 80% capacity factor, and using coal-derived distillate fuel at \$2.46/GJ ($$2.60/10^6$ Btu) compared with Illinois No. 6 bituminous coal at \$0.806/GJ ($$0.85/10^6$ Btu), the combined cycle with the integrated low-Btu gasification system can generate electricity at a nearly 30% lower cost than the corfesponding plant burning distillate. At capacity factors down to approximately 0.45, the combined-cycle plant with the integrated gasification system gives the lowest COE.

6.7.2 Recommendations

It is recommended that a continued conceptual design effort be applied in the following areas in order to achieve maximum benefit from the gas-steam combined cycle.

6.7.2.1 Induction Steam Turbine Generator

Induction stoom turbines have been built and successfully operated for some time in smaller sizes. Comparable experience in large power generation size units is minimal. Further design investigations into the configurations and operational requirements (particularly with regard to control and turbine protection) of the induction steam turbine will be required.

6.7.2.2 Gas Turbine Inlet Temperature

Gas turbines currently operate at approximately 1366°K (2000°F) turbine inlet temperature in base-load commercial power generation

6-102

 $\sim 2^{\circ}$

service. Analysis shows continued improvement in the COE with increasing turbine inlet temperatures. A continued design and development effort with advanced gas turbine blading materials and cooling techniques will be required in order to realize the benefits concommitant with higher turbine inlet temperatures. The conceptual design of an advanced combined-cycle plant with an integrated gasification system based on high-temperature gas turbine technology should be continued.

6.7.2.3 Integrated Coal Gasification System

Satisfactory service with an integrated combined-cycle gasification system has not been demonstrated. Further, existing commercially available coal gasifiers have not been designed for integrated combinedcycle operation. Therefore, continued development of the integrated coal gasification subsystem is needed. It is particularly necessary that development of efficient gas cleanup methods be emphasized to ensure compatibility with gas turbine engine requirements.

Just as a continuing, vigorous effort toward developing higher turbine inlet temperatures is essential to realize continued benefits from gas turbine technology advances, the fact should not be overlooked that today's combined cycles operating at turbine inlet temperatures of about 1366°K (2000°F), continuous duty, compare most favorably in terms of thermodynamic efficiency with conventional power generating modes. In order to bring to fruition as quickly as possible the benefits of the combined-cycle plant with an integrated coal gasification system, attention should be directed to coupling current coal gasification technology with more moderate advances in gas turbine technology than those indicated by the arbitrary upper turbine inlet temperature bounds of this parametric study. A conceptual design effort aimed at early implementation of an integrated combined-cycle plant with turbine inlet temperatures in the 1478 to 1533°K (2200 to 2300°F) range should be commenced as well.

6.8 References

e.

6.1 W. G. Noack. "The Velox Boiler," Engrg., Vol. 135, No. 3496, p. 52, 1933.

a erra a vena

- 6.2 A. Meyer. "High Pressure Boilers: Velox Steam Generator," Marc. Engr., Vol. 40, No. 9, p. 341, 1935.
- 6.3 L. Greco. "A New Brown Boveri Velox Boiler in a Municipal District Heating Plant," Brown Boveri Review, July, 1959.
- 6.4 R. C. Sheldon and T. D. McCone. "Performance Characteristics of Combined Steam-Gas Turbine Cycles," American Power Conference, March, 1962.
- 6.5 E. L. Daman and R. J. Zoschak. "Supercharged Boiler Design Development and Application," American Power Conference, 1956.
- 6.6 E. L. Daman and E. L. Richardson. "Economics of Medium-Sized Supercharged Fower Plants," American Power Conference, 1957.
- 6.7 K. E. Ray. "A 133,500 kW Combined-Cycle Generating Plant," Heat Engineering, May-June, 1957.
- 6.8 A. O. White. "The Combined Gas Turbine-Steam Turbine Cycle with Supercharged Boiler and Its Fuels," ASME 57-A-264.
- 6.9 W. P. Gorzegno and R. J. Zoschak. "Supercharging the Once-through Unit," ASME 64-PWR-15.
- 6.10 W. P. Gorzegno and R. J. Zoschak. "The Supercharged Steam Generator - Some Aspects of Design and Pressure Level Selection," ASME 66-GT/CMC-69.
- 6.11 A. C. Licansi. "The Supercharged Steam Generator: Its First Shipboard Installation," ASME 62-WA-291.
- 6.12 "Power Plant Integrated with Pressure Gasification of Coal Combustion," February, 1970.
- 6.13 S. A. Khristianovich, V. M. Maslennikov, and V. Ya. Shterenberg. "Steam Turbine-Gas Turbine Plant for Combined Generation of Heat

REFOOT OF THE

and Power," Institute of High Temperatures, USSR Academy of Sciences, [Tepioenergetika, 1973 20 (7) 43-48].

- 6.14 "Supercharged Steam Generator for 200 MW Combined Steam and Gas Turbine Plants," Moskva Licensintorg #1699.
- 6.15 T. H. George. "The World's First Large Combined Cycle (Steam Turbine-Gas Turbine) Generating Unit: How Is It Doing?" ASME-IEEE National Power Conference, Tulsa, Oklahoma, September.
- 6.16 J. B. Stout, J. J. Walsh, and A. G. Mellor. "A Large Combined Gas Turbine-Steam Turbine Generating Unit," American Power Conference, Vol. XXIV, pp. 404-411, 1962.
- 6.17 J. A. Hutchinson and R. J. Peyton. "Design and Description of the Plant," American Power Conference, 1963.
- 6.18 R. W. Foster-Pegg. "Selection of the Combined Cycle," American Power Conference, 1963.
- 6.19 V. P. Buscemi. "Steam and Gas Turbine-Generators," American Power Conference, 1963.
- 6.20 C. F. Hawley. "Steam Generator Design," American Power Conference, 1963.
- 6.21 A. R. Cox, L. B. Henson, and C. W. Johnson. "Operation of San Angelo Power Station Combined Steam and Gas Turbine Cycle," American Power Conference, April 1967.
- 6.22 R. W. Jones and A. C. Schoults. "Design and Operating Experience with Gas Turbine Combined Cycle Units," ASME 71-GT-22.
- 6.23 H. J. Blaskowski and J. G. Singer. "Gas Turbine Boiler Applications Combustion," May 1957.
- 6.24 J. C. Stewart and H. J. Streich. "The Design and Application of the Gas Turbine Heat Recovery Boiler," ASME-GT-36.
- 6.25 W. V. Hambleton. "General Design Considerations for Cas Turbine Waste Heat Steam Generators," ASME 68-GT-44.

6-105

