190 research outputs found

    Span Morphing Using the Compliant Spar

    Full text link
    This paper develops and models the Compliant Spar concept that allows the wing span to be varied to provide roll control and enhance the operational performance for a medium altitude long endurance (MALE) UAV. The wing semi-span is split into morphing partitions and the concept maybe incorporated in each partition; however only the tip partition is considered here. The Compliant Spar is made of compliant joints arrange in series to allow the partition to be flexible under axial (spanwise) loads but at the same time stiff enough to resist bending loads. Each compliant joint consists of two concentric overlapping AL 2024-T3 tubes joined together using elastomeric material. Under axial (spanwise) loading, the elastomeric material deforms in shear allowing the overlapping distance between the tubes to vary and hence the length (in the spanwise direction) of the joint/spar to vary. High fidelity modelling of the concept is performed. Then, structural optimisation studies are performed to minimise the axial stiffness and the structural mass of the concept for various design constraints. The flexible skin and actuation system to be used are also addressed

    Expanding the Grading of Recommendations Assessment, Development, and Evaluation (Ex-GRADE) for Evidence-Based Clinical Recommendations: Validation Study

    Get PDF
    Clinicians use general practice guidelines as a source of support for their intervention, but how much confidence should they place on these recommendations? How much confidence should patients place on these recommendations? Various instruments are available to assess the quality of evidence of research, such as the revised Wong scale (R-Wong) which examines the quality of research design, methodology and data analysis, and the revision of the assessment of multiple systematic reviews (R-AMSTAR), which examines the quality of systematic reviews

    First direct detection constraints on planck-scale mass dark matter with multiple-scatter signatures using the DEAP-3600 detector

    Get PDF
    Dark matter with Planck-scale mass (?1019 GeV/c2) arises in well-motivated theories and could be produced by several cosmological mechanisms. A search for multiscatter signals from supermassive dark matter was performed with a blind analysis of data collected over a 813 d live time with DEAP-3600, a 3.3 t single-phase liquid argon-based detector at SNOLAB. No candidate signals were observed, leading to the first direct detection constraints on Planck-scale mass dark matter. Leading limits constrain dark matter masses between 8.3×106 and 1.2×1019 GeV/c2, and Ar40-scattering cross sections between 1.0×10-23 and 2.4×10-18 cm2. These results are interpreted as constraints on composite dark matter models with two different nucleon-to-nuclear cross section scalings

    Electromagnetic backgrounds and potassium-42 activity in the DEAP-3600 dark matter detector

    Get PDF
    See full article for abstrac

    The liquid-argon scintillation pulseshape in DEAP-3600

    Get PDF
    DEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed here is the basis of PSD. The observed pulseshape is a combination of LAr scintillation physics with detector effects. We present a model for the pulseshape of electromagnetic background events in the energy region of interest for dark matter searches. The model is composed of (a) LAr scintillation physics, including the so-called intermediate component, (b) the time response of the TPB wavelength shifter, including delayed TPB emission at O(ms) time-scales, and c) PMT response. TPB is the wavelength shifter of choice in most LAr detectors. We find that approximately 10% of the intensity of the wavelength-shifted light is in a long-lived state of TPB. This causes light from an event to spill into subsequent events to an extent not usually accounted for in the design and data analysis of LAr-based detectors

    Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector

    Get PDF
    DEAP-3600 is a single-phase liquid argon detector aiming to directly detect Weakly Interacting Massive Particles (WIMPs), located at SNOLAB (Sudbury, Canada). After analyzing data taken during the first year of operation, a null result was used to place an upper bound on the WIMP-nucleon spin-independent, isoscalar cross section. This study reinterprets this result within a Non-Relativistic Effective Field Theory framework, and further examines how various possible substructures in the local dark matter halo may affect these constraints. Such substructures are hinted at by kinematic structures in the local stellar distribution observed by the Gaia satellite and other recent astronomical surveys. These include the Gaia Sausage (or Enceladus), as well as a number of distinct streams identified in recent studies. Limits are presented for the coupling strength of the effective contact interaction operators O1\mathcal{O}_1, O3\mathcal{O}_3, O5\mathcal{O}_5, O8\mathcal{O}_8, and O11\mathcal{O}_{11}, considering isoscalar, isovector, and xenonphobic scenarios, as well as the specific operators corresponding to millicharge, magnetic dipole, electric dipole, and anapole interactions. The effects of halo substructures on each of these operators are explored as well, showing that the O5\mathcal{O}_5 and O8\mathcal{O}_8 operators are particularly sensitive to the velocity distribution, even at dark matter masses above 100 GeV/c2c^2
    corecore