23,399 research outputs found

    BPS Skyrme neutron stars in generalized gravity

    Get PDF
    We study the coupling of nuclear matter described by the BPS Skyrme model to generalized gravity. Concretely, we consider the Starobinsky model which provides the leading-order correction to the Einstein-Hilbert action. Static solutions describing neutron stars are found both for the full field theory and for the mean-field approximation. We always consider the full Starobinsky model in the nonperturbative approach, using appropriately generalized shooting methods for the numerical neutron star calculations. Many of our results are similar to previous investigations of neutron stars for the Starobinsky model using other models of nuclear matter, but there are some surprizing discrepancies. The "Newtonian mass" relevant for the surface redshift, e.g., results larger than the ADM mass in our model, in contrast to other investigations. This difference is related to the particularly high stiffness of nuclear matter described by the BPS Skyrme model and offers an interesting possibility to distinguish different models of nuclear matter within generalized gravity.Comment: LaTex, 28 pages, 13 figures; v2: minor change

    Ferromagnetic ordering in graphs with arbitrary degree distribution

    Full text link
    We present a detailed study of the phase diagram of the Ising model in random graphs with arbitrary degree distribution. By using the replica method we compute exactly the value of the critical temperature and the associated critical exponents as a function of the minimum and maximum degree, and the degree distribution characterizing the graph. As expected, there is a ferromagnetic transition provided < \infty. However, if the fourth moment of the degree distribution is not finite then non-trivial scaling exponents are obtained. These results are analyzed for the particular case of power-law distributed random graphs.Comment: 9 pages, 1 figur

    The impact of the air-fluorescence yield on the reconstructed shower parameters of ultra-high energy cosmic rays

    Get PDF
    An accurate knowledge of the fluorescence yield and its dependence on atmospheric properties such as pressure, temperature or humidity is essential to obtain a reliable measurement of the primary energy of cosmic rays in experiments using the fluorescence technique. In this work, several sets of fluorescence yield data (i.e. absolute value and quenching parameters) are described and compared. A simple procedure to study the effect of the assumed fluorescence yield on the reconstructed shower parameters (energy and shower maximum depth) as a function of the primary features has been developed. As an application, the effect of water vapor and temperature dependence of the collisional cross section on the fluorescence yield and its impact on the reconstruction of primary energy and shower maximum depth has been studied.Comment: Accepted in Astroparticle Physic

    Agent Based Models of Language Competition: Macroscopic descriptions and Order-Disorder transitions

    Get PDF
    We investigate the dynamics of two agent based models of language competition. In the first model, each individual can be in one of two possible states, either using language XX or language YY, while the second model incorporates a third state XY, representing individuals that use both languages (bilinguals). We analyze the models on complex networks and two-dimensional square lattices by analytical and numerical methods, and show that they exhibit a transition from one-language dominance to language coexistence. We find that the coexistence of languages is more difficult to maintain in the Bilinguals model, where the presence of bilinguals in use facilitates the ultimate dominance of one of the two languages. A stability analysis reveals that the coexistence is more unlikely to happen in poorly-connected than in fully connected networks, and that the dominance of only one language is enhanced as the connectivity decreases. This dominance effect is even stronger in a two-dimensional space, where domain coarsening tends to drive the system towards language consensus.Comment: 30 pages, 11 figure
    corecore