131 research outputs found

    Investigation of different versions of formulation of the problem of soundproofing of rectangular plates surrounded with acoustic media

    Get PDF
    Β© 2017 Springer Science+Business Media New York. We consider five different formulations of the stationary problem of passage of plane acoustic waves through a rectangular plate. The first of these formulations corresponds to the application of the inertial mass model based on the hypothesis of the nondeformability of a nonfixed rigid plate in the course of its interaction with incident and plane acoustic waves formed in the surrounding half spaces. The other four statements correspond to taking into account (according to the model of the Winkler base) or neglecting the compliance of the support contour of a hingedly supported rectangular plate deformed according to the Kirchhoff model and to the application one-or three-dimensional wave equations for the description of motions of the acoustic media and the construction of the equation of motion of the plate with regard for its certain external damping. The use of these last four statements enables us to obtain smoothened graphic frequency dependences whose shapes agree with the experimental dependences obtained by testing specimens in the acoustic laboratory aimed at finding the soundproofing index of the plate

    Investigation of Different Versions of Formulation of the Problem of Soundproofing of Rectangular Plates Surrounded with Acoustic Media

    Get PDF
    Β© 2016 Springer Science+Business Media New YorkWe consider five different formulations of the stationary problem of passage of plane acoustic waves through a rectangular plate. The first of these formulations corresponds to the application of the inertial mass model based on the hypothesis of the nondeformability of a nonfixed rigid plate in the course of its interaction with incident and plane acoustic waves formed in the surrounding half spaces. The other four statements correspond to taking into account (according to the model of the Winkler base) or neglecting the compliance of the support contour of a hingedly supported rectangular plate deformed according to the Kirchhoff model and to the application one- or three-dimensional wave equations for the description of motions of the acoustic media and the construction of the equation of motion of the plate with regard for its certain external damping. The use of these last four statements enables us to obtain smoothened graphic frequency dependences whose shapes agree with the experimental dependences obtained by testing specimens in the acoustic laboratory aimed at finding the soundproofing index of the plate

    ΠšΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΡ Π²ΠΊΠ»Π°Π΄Π° рассСянного Ρ„ΠΎΡ‚ΠΎΠ½Π½ΠΎΠ³ΠΎ излучСния Π² показания ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅Ρ€Ρ‹ ΠΏΡ€ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ качСства рСнтгСновского излучСния

    Get PDF
    Reduction of the systematic error when determining the characteristics of the reference X-ray radiation fields is an essential task according to the ISO 4037-1:2019 standard. This task is especially important in dosimetry laboratories when establishing the qualities of reference photon fields. The aim of the study was to develop a method that allows taking into account the contribution of radiation scattered on the filter when determining the half-value layer of the photon field generated by the X-ray unit. Another goal was to reduce the computational cost of determining this contribution.One of the major contributors to the systematic error in measuring the half-value layer is the radiation scattered on the filter material. The standard recommends that this error should be taken into account in the measurement. But it does not provide any methodology that would do this.The study investigated the possibility of reducing the contribution of scattered radiation to the ionization chamber readings when assessing the radiation quality of the X-ray unit by the means of half-value layer. The study utilized the (N,Β H,Β L) quality series as reference fields according to ISO 4037-1:2019.Contribution of the scattered radiation to the half-value layer was compensated with the correction coefficients; they were calculated with the FLUKA Monte Carlo software according to the zero-aperture approximation method. Unlike other similar methods, the proposed approach employs kinetic energy released to matter (kerma), to air in this case, as the main value, which, when utilized instead of deposited energy, reduces the program’s runtime several fold.Correctness of the results obtained in this work was verified by comparing the calculated values of the half-value layer with the tabulated ones provided in the ISO 4037-1:2019 standard. The deviation of calculated values from those specified in the standard does not exceed 2 %.Calculation results showed that the error contributed by scattered radiation to the magnitude of the halfvalue layer in direct measurements does not exceed 5 %. The use of the air kerma allowed us to significantly reduce the time for calculating the correction coefficients by the factor of 6–16 times with respect to other methods, depending on the radiation quality series. This made it possible to calculate correction factors for the source-detector distance equal to 2.5 meters.УмСньшСниС систСматичСской ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ характСристик эталонных ΠΏΠΎΠ»Π΅ΠΉ рСнтгСновского излучСния Π² соотвСтствии со стандартом ISO 4037-1:2019 являСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ ΠΏΡ€ΠΈ установлСнии качСств излучСния Π² дозимСтричСских лабораториях. ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлась Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅Π³ΠΎ ΡƒΡ‡Π΅ΡΡ‚ΡŒ Π²ΠΊΠ»Π°Π΄ излучСния, рассСянного Π½Π° Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π΅, ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ слоя ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π½ΠΎΠ³ΠΎ ослаблСния поля Ρ„ΠΎΡ‚ΠΎΠ½Π½ΠΎΠ³ΠΎ излучСния, Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ рСнтгСновской установкой, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π·Π°Ρ‚Ρ€Π°Ρ‚Ρ‹ Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ этого Π²ΠΊΠ»Π°Π΄Π°.Одним ΠΈΠ· основных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ вносит ΡΠΈΡΡ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ слоя ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π½ΠΎΠ³ΠΎ ослаблСния, являСтся ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅, рассСянноС Π½Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°. Π‘Ρ‚Π°Π½Π΄Π°Ρ€Ρ‚ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΠ΅Ρ‚ ΡƒΡ‡Ρ‘Ρ‚ этой ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π½Π΅ содСрТит ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ, которая ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° Π±Ρ‹ это ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ.Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ исслСдовалась Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ Π²ΠΊΠ»Π°Π΄Π° рассСянного излучСния Π² ΠΎΡ‚ΠΊΠ»ΠΈΠΊ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅Ρ€Ρ‹ ΠΏΡ€ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ характСристик ΠΏΠΎΠ»Π΅ΠΉ излучСния рСнтгСновской установки с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ измСрСния слоёв ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π½ΠΎΠ³ΠΎ ослаблСния для N-сСрии,Β L-сСрии ΠΈΒ H-сСрии качСств рСнтгСновского излучСния согласно стандарту ISO 4037-1:2019. ΠšΠΎΠΌΠΏΠ΅Π½ΡΠ°Ρ†ΠΈΡ Π²ΠΊΠ»Π°Π΄Π° рассСянного излучСния Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ ΠΏΡƒΡ‚Ρ‘ΠΌ примСнСния ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… коэффициСнтов. Расчёт коэффициСнтов производился ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ Π°ΠΏΠ΅Ρ€Ρ‚ΡƒΡ€Ρ‹, Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π² ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ FLUKA. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅, являСтся Π²Ρ‹Π±ΠΎΡ€ Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ ΠΊΠ΅Ρ€ΠΌΡ‹ Π² качСствС расчётной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅Ρ€Ρ‹ Π½Π° воздСйствиС Ρ„ΠΎΡ‚ΠΎΠ½Π½ΠΎΠ³ΠΎ излучСния. ΠšΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅, ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡΠ»Π°ΡΡŒ сопоставлСниСм расчётных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ слоёв ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π½ΠΎΠ³ΠΎ ослаблСния с Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ значСниями, ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹ΠΌΠΈ Π² стандартС ISO 4037-1:2019. ΠžΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ расчётных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΎΡ‚ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… Π² стандартС Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ 2 %.УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ, вносимая рассСянным ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ Π² Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ слоя ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π½ΠΎΠ³ΠΎ ослаблСния ΠΏΡ€ΠΈ прямых измСрСниях, Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ 5 %. ИспользованиС Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ ΠΊΠ΅Ρ€ΠΌΡ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ сущСствСнно ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ врСмя расчёта коэффициСнтов ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ (ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ², Π³Π΄Π΅ Π² качСствС ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅Ρ€Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ поглощённая энСргия) Π² 6–16 Ρ€Π°Π· Π² зависимости ΠΎΡ‚ сСрии качСства излучСния. Π­Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ произвСсти расчёт ΠΏΠΎΠΏΡ€Π°Π²ΠΎΡ‡Π½Ρ‹Ρ… коэффициСнтов для расстояния источник–дСтСктор, Ρ€Π°Π²Π½ΠΎΠ³ΠΎ 2,5 ΠΌ

    METROLOGICAL SUPPORT OF DOSIMETRY GAMMA-RAY WITH ENERGY TO 10 MEV FOR RADIATION PROTECTION DEVICES

    Get PDF
    The field of high-energy gamma-ray for the calibration of radiation protection devices can be obtained by capturing thermal neutrons from titanium target (to 7 MeV) and nickel target (to 10 MeV). The aim of this work was to determine the metrological characteristics of capture gamma-ray fields from titanium target and nickel target obtained at the AT140 Neutron Calibration Facility to provide dosimetry up to 10 MeV.We have chosen energy intervals in which we can calibrate dosimetry devices taking into account the accompanying generation of gamma-ray neutrons by the fast neutron source 238PuBe, the capture radiation of collimator materials and capture radiation from targets.We measured air kerma rate with the aid of the reference AT5350 dosimeter with the ionization chamber TM32002. Using the Monte-Carlo simulation, we obtained the energy distribution of the air kerma rate for targets. We determined the geometric dimensions of the uniform field and the interval of operating distances of the facility.We investigated the metrological characteristics of capture gamma-ray fields from titanium target and nickel target obtained at the AT140 Neutron Calibration Facility for dosimetric radiation protection devices. We showed that in such fields it is possible to calibrate dosimetry devices in the extended energy range up to 10 MeV

    Correction of the Contribution of Scattered Photon Radiation to the Ionization Chamber Readings During X-Ray Radiation Quality Assessment

    Get PDF
    Reduction of the systematic error when determining the characteristics of the reference X-ray radiation fields is an essential task according to the ISO 4037-1:2019 standard. This task is especially important in dosimetry laboratories when establishing the qualities of reference photon fields. The aim of the study was to develop a method that allows taking into account the contribution of radiation scattered on the filter when determining the half-value layer of the photon field generated by the X-ray unit. Another goal was to reduce the computational cost of determining this contribution. One of the major contributors to the systematic error in measuring the half-value layer is the radiation scattered on the filter material. The standard recommends that this error should be taken into account in the measurement. But it does not provide any methodology that would do this. The study investigated the possibility of reducing the contribution of scattered radiation to the ionization chamber readings when assessing the radiation quality of the X-ray unit by the means of half-value layer. The study utilized the (N, H, L) quality series as reference fields according to ISO 4037-1:2019. Contribution of the scattered radiation to the half-value layer was compensated with the correction coefficients; they were calculated with the FLUKA Monte Carlo software according to the zero-aperture approximation method. Unlike other similar methods, the proposed approach employs kinetic energy released to matter (kerma), to air in this case, as the main value, which, when utilized instead of deposited energy, reduces the program’s runtime several fold. Correctness of the results obtained in this work was verified by comparing the calculated values of the half-value layer with the tabulated ones provided in the ISO 4037-1:2019 standard. The deviation of calculated values from those specified in the standard does not exceed 2 %. Calculation results showed that the error contributed by scattered radiation to the magnitude of the halfvalue layer in direct measurements does not exceed 5 %. The use of the air kerma allowed us to significantly reduce the time for calculating the correction coefficients by the factor of 6–16 times with respect to other methods, depending on the radiation quality series. This made it possible to calculate correction factors for the source-detector distance equal to 2.5 meters

    ΠŸΠ Π˜ΠœΠ•ΠΠ•ΠΠ˜Π• Π‘ΠŸΠ•ΠšΠ’Π ΠžΠœΠ•Π’Π Π˜Π§Π•Π‘ΠšΠžΠ“Πž ΠœΠ•Π’ΠžΠ”Π РАБЧЕВА МОЩНОБВИ Π”ΠžΠ—Π« Π”Π›Π― Π‘ΠžΠ—Π”ΠΠΠ˜Π― Π’Π«Π‘ΠžΠšΠžΠ§Π£Π’Π‘Π’Π’Π˜Π’Π•Π›Π¬ΠΠ«Π₯ ΠžΠ‘Π ΠΠ—Π¦ΠžΠ’Π«Π₯ Π‘Π Π•Π”Π‘Π’Π’ Π˜Π—ΠœΠ•Π Π•ΠΠ˜Π― НА БАЗЕ Π‘Π¦Π˜ΠΠ’Π˜Π›Π›Π―Π¦Π˜ΠžΠΠΠ«Π₯ Π‘Π›ΠžΠšΠžΠ’ Π”Π•Π’Π•ΠšΠ’Π˜Π ΠžΠ’ΠΠΠ˜Π―

    Get PDF
    Devices based on scintillation detector are highly sensitive to photon radiation and are widely used to measure the environment dose rate. Modernization of the measuring path to minimize the error in measuring the response of the detector to gamma radiation has already reached its technological ceiling and does not give the proper effect. More promising for this purpose are new methods of processing the obtained spectrometric information. The purpose of this work is the development of highly sensitive instruments based on scintillation detection units using a spectrometric method for calculating dose rate.In this paper we consider the spectrometric method of dosimetry of gamma radiation based on the transformation of the measured instrumental spectrum. Using predetermined or measured functions of the detector response to the action of gamma radiation of a given energy and flux density, a certain function of the energy G(E) is determined. Using this function as the core of the integral transformation from the field to dose characteristic, it is possible to obtain the dose value directly from the current instrumentation spectrum. Applying the function G(E) to the energy distribution of the fluence of photon radiation in the environment, the total dose rate can be determined without information on the distribution of radioisotopes in the environment.To determine G(E) by Monte-Carlo method instrumental response function of the scintillator detector to monoenergetic photon radiation sources as well as other characteristics are calculated. Then the whole full-scale energy range is divided into energy ranges for which the function G(E) is calculated using a linear interpolation.Spectrometric method for dose calculation using the function G(E), which allows the use of scintillation detection units for a wide range of dosimetry applications is considered in the article. As well as describes the method of calculating this function by using Monte-Carlo methods and the features of its application. The results of the calculation function G(E) for the detection unit on the basis of NaI(Tl) detector (Ø40 mm, h = 40 mm) to use it as a comparator for kerma rate in the air certification of low intenseΠ΅ photon radiation fields.Β Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ рассматриваСтся спСктромСтричСский ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄ΠΎΠ·ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ гаммаизлучСния Π½Π° основС прСобразования ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ спСктра. Π‘ использованиСм Π·Π°Ρ€Π°Π½Π΅Π΅ рассчитанных ΠΈΠ»ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° воздСйствиС Π³Π°ΠΌΠΌΠ°-излучСния Π·Π°Π΄Π°Π½Π½ΠΎΠΉ энСргий ΠΈ плотности ΠΏΠΎΡ‚ΠΎΠΊΠ° опрСдСляСтся нСкоторая функция ΠΎΡ‚ энСргии G(E). Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ эту Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π² качСствС ядра ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ прСобразования ΠΎΡ‚ характСристики поля ΠΊ Π΄ΠΎΠ·Π΅, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Π΄ΠΎΠ·Ρ‹ нСпосрСдствСнно ΠΈΠ· Ρ‚Π΅ΠΊΡƒΡ‰Π΅Π³ΠΎ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ спСктра. ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΡ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ G(E) ΠΊ энСргСтичСскому Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Ρ„Π»ΡŽΠ΅Π½ΡΠ° Ρ„ΠΎΡ‚ΠΎΠ½Π½ΠΎΠ³ΠΎ излучСния Π² ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСдС, общая ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ Π΄ΠΎΠ·Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Π±Π΅Π· ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΎ распрСдСлСнии Ρ€Π°Π΄ΠΈΠΎΠΈΠ·ΠΎΡ‚ΠΎΠΏΠΎΠ² Π² ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСдС.Для опрСдСлСния G(E) ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° сцинтилляционного Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ моноэнСргСтичСских Ρ„ΠΎΡ‚ΠΎΠ½Π½Ρ‹Ρ… источников, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ характСристики. Π”Π°Π»Π΅Π΅ вСсь энСргСтичСский Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ рСгистрации разбиваСтся Π½Π° энСргСтичСскиС ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… вычисляСтся функция G(E) с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ интСрполяции.РассматриваСмый спСктромСтричСский ΠΌΠ΅Ρ‚ΠΎΠ΄ расчСта Π΄ΠΎΠ·Ρ‹ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ G(E) позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ сцинтилляционныС Π±Π»ΠΎΠΊΠΈ дСтСктирования для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ ΠΊΡ€ΡƒΠ³Π° дозимСтричСских Π·Π°Π΄Π°Ρ‡. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ способ вычислСния Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ ΠΈ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ особСнности Π΅Π΅ примСнСния. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ расчСта Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ G(E) для Π±Π»ΠΎΠΊΠ° дСтСктирования с NaI(Tl) Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ (Ø40 ΠΌΠΌ, h = 40 ΠΌΠΌ) ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π΅Π³ΠΎ использования Π² качСствС Π±Π»ΠΎΠΊΠ°-ΠΊΠΎΠΌΠΏΠ°Ρ€Π°Ρ‚ΠΎΡ€Π° для аттСстации низкоинтСнсивных ΠΏΠΎΠ»Π΅ΠΉ Ρ„ΠΎΡ‚ΠΎΠ½Π½ΠΎΠ³ΠΎ излучСния ΠΏΠΎ мощности ΠΊΠ΅Ρ€ΠΌΡ‹ Π² Π²ΠΎΠ·Π΄ΡƒΡ…Π΅.

    Rational Solutions of the Painleve' VI Equation

    Full text link
    In this paper, we classify all values of the parameters Ξ±\alpha, Ξ²\beta, Ξ³\gamma and Ξ΄\delta of the Painlev\'e VI equation such that there are rational solutions. We give a formula for them up to the birational canonical transformations and the symmetries of the Painlev\'e VI equation.Comment: 13 pages, 1 Postscript figure Typos fixe

    Determinant Structure of the Rational Solutions for the Painlev\'e IV Equation

    Full text link
    Rational solutions for the Painlev\'e IV equation are investigated by Hirota bilinear formalism. It is shown that the solutions in one hierarchy are expressed by 3-reduced Schur functions, and those in another two hierarchies by Casorati determinant of the Hermite polynomials, or by special case of the Schur polynomials.Comment: 19 pages, Latex, using theorem.st

    Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΠΏΠΎΠ»Π΅ΠΉ рСнтгСновского излучСния с Π½ΠΈΠ·ΠΊΠΎΠΉ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ Π΄ΠΎΠ·Ρ‹ для исслСдования энСргСтичСской зависимости Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ дозимСтричСских срСдств ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π½Π° основС сцинтилляционных Π±Π»ΠΎΠΊΠΎΠ² дСтСктирования

    Get PDF
    Near background low dose rate measurements are important part of the environmental radiation monitoring. It is possible to fulfill energy response verification for the high sensitive dosimeters based on inorganic scintillation detectors in low energy region when creating reference X-ray fields with dose rates up to 5 Β΅Sv/h. The aim of this work was to create and study reference X-ray fields with low dose rate and narrow spectrum in the energy range from 15 to 250 keV using high-purity metal filters as a part of X-ray irradiator of AT300 X-ray calibration facility.To determine the main characteristics of created X-ray fields highly sensitive comparators of photon radiation based on NaI(Tl) scintillation detectors was used. The comparators were developed in β€œATOMTEX”. To verify comparators energy response the reference AT5350/1 dosimeter and ionization chamber TM32003 with sensitive volume 10000 cm3Β were used.Characteristics of X-ray fields that were created on the AT300 X-ray calibration facility to verify the energy response of high sensitive dosimeters based on scintillation detectors were investigated. The possibility to calibrate high sensitive dosimetric measuring instruments based on scintillation detectors in the energy range up to 250 keV in X-ray beams was shown.Π˜Π·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ мощности Π΄ΠΎΠ·Ρ‹ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ СстСствСнного Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Ρ„ΠΎΠ½Π° являСтся Π²Π°ΠΆΠ½Ρ‹ΠΌ элСмСнтом Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° энСргСтичСской зависимости ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠΉ Π²Ρ‹ΡΠΎΠΊΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… дозимСтричСских срСдств ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π½Π° основС нСорганичСских сцинтилляционных Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² области Π½ΠΈΠ·ΠΊΠΈΡ… энСргий Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π° ΠΏΡ€ΠΈ создании эталонных ΠΏΠΎΠ»Π΅ΠΉ рСнтгСновского излучСния с Π½ΠΈΠ·ΠΊΠΈΠΌΠΈ уровнями мощности Π΄ΠΎΠ·Ρ‹ (Π΄ΠΎ 5 ΠΌΠΊΠ—Π²/Ρ‡). ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось созданиС ΠΈ исслСдованиС эталонных ΠΏΠΎΠ»Π΅ΠΉ рСнтгСновского излучСния с Π½ΠΈΠ·ΠΊΠΎΠΉ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ Π΄ΠΎΠ·Ρ‹ ΠΈ ΡƒΠ·ΠΊΠΈΠΌ спСктром Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ энСргий ΠΎΡ‚ 15 Π΄ΠΎ 250 кэВ с использованиСм Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ² ΠΈΠ· особо чистых ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π² составС формироватСля поля рСнтгСновского излучСния установки УПР-АВ300.Для опрСдСлСния основных характСристик созданных ΠΏΠΎΠ»Π΅ΠΉ рСнтгСновского излучСния использовались Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ Π² УП Β«ΠΠ’ΠžΠœΠ’Π•Π₯Β» Π²Ρ‹ΡΠΎΠΊΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π±Π»ΠΎΠΊΠΈ-ΠΊΠΎΠΌΠΏΠ°Ρ€Π°Ρ‚ΠΎΡ€Ρ‹ Ρ„ΠΎΡ‚ΠΎΠ½Π½ΠΎΠ³ΠΎ излучСния Π½Π° основС сцинтилляционных NaI(Tl) Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° энСргСтичСской зависимости Π±Π»ΠΎΠΊΠ°-ΠΊΠΎΠΌΠΏΠ°Ρ€Π°Ρ‚ΠΎΡ€Π° ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»Π°ΡΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ эталонного Π΄ΠΎΠ·ΠΈΠΌΠ΅Ρ‚Ρ€Π° Π”ΠšΠ‘-АВ5350/1 ΠΈ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠ°ΠΌΠ΅Ρ€Ρ‹ ВМ32003 с Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ объСмом 10000 см3.Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ характСристики ΠΏΠΎΠ»Π΅ΠΉ рСнтгСновского излучСния, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π½Π° ΠΏΠΎΠ²Π΅Ρ€ΠΎΡ‡Π½ΠΎΠΉ установкС рСнтгСновского излучСния УПР-АВ300 с Ρ†Π΅Π»ΡŒΡŽ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ энСргСтичСской зависимости ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠΉ Π²Ρ‹ΡΠΎΠΊΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… дозимСтричСских срСдств ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π½Π° основС сцинтилляционных Π±Π»ΠΎΠΊΠΎΠ² дСтСктирования. Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΊΠΈ Π²Ρ‹ΡΠΎΠΊΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… дозимСтричСских срСдств ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π½Π° основС сцинтилляционных Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² энСргСтичСском Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΄ΠΎ 250 кэВ Π² ΠΏΡƒΡ‡ΠΊΠ°Ρ… рСнтгСновского излучСния

    Π€ΠžΠ ΠœΠ˜Π ΠžΠ’ΠΠΠ˜Π• ΠŸΠžΠ›Π― ЗАΠ₯Π’ΠΠ’ΠΠžΠ“Πž Π“ΠΠœΠœΠ-Π˜Π—Π›Π£Π§Π•ΠΠ˜Π― Π”Πž 10 ΠœΡΠ’ Π”Π›Π― ΠœΠ•Π’Π ΠžΠ›ΠžΠ“Π˜Π§Π•Π‘ΠšΠžΠ“Πž ΠžΠ‘Π•Π‘ΠŸΠ•Π§Π•ΠΠ˜Π― ΠŸΠ Π˜Π‘ΠžΠ ΠžΠ’ Π ΠΠ”Π˜ΠΠ¦Π˜ΠžΠΠΠžΠ™ Π—ΠΠ©Π˜Π’Π«

    Get PDF
    Medical, and technological linear particle accelerators, and nuclear reactors are vastly widespread worldwide today. These facility generate fields of secondary gamma radiation with energy to 10 MeV. Therefore, we have a need to calibrate spectrometric and dosimetric ionization measurement instruments for the energies to 10 MeV. The aim of this work is to determine possibility to use thermal neutron collimator of АВ140 Neutron Calibration Facility with 238Pu-Be fast neutron source (IBN-8-6) for this. Below 3 MeV we use a set of point gamma standard spectrometry sources OSGI. We can acquire gamma rays with energies above 3 MeV using radioactive thermal neutron capture on target, i.e. (n, Ξ³)-nuclear reaction. We can use neutron capture gamma-ray from titanium target (to 7 MeV) or nickel target (to 10 MeV) situated in thermal neutron field for calibration. We can use thermal neutron collimator of АВ140 Neutron Calibration Facility with 238Pu-Be fast neutron source (IBN-8-6) for slowing down neutrons from radionuclide fast neutron sources to thermal energies in polyethylene. Thermal neutron collimator forms a beam from radionuclide source with a significant amount of neutrons with thermal energies. We placed Ti and Ni targets in collimator’s canal. We got experimental spectral data on detection unit BDKG-19M NaI(Tl) 63β€ŠΓ—β€Š160 mm with nonlinear channel-energy conversion characteristic in range to 10 MeV. For additional filtration we proposed to use polyethylene neutron reflector and lead discs. We experimentally determined that placement of lead discs in collimator in front of the target allows to filter all spectrum while insignificantly weakening target’s emission. Using theoretical and experimental data we proved the ability to calibrate gamma-ray spectrometers in the range to 10 MeV.Β Π Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΈ распространСниС Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… источников высокоэнСргСтичСского Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ гаммаизлучСния ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ряду ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… спСктромСтричСскиС ΠΈ дозимСтричСскиС ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΈΠ±ΠΎΡ€Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² Ρ„ΠΎΡ‚ΠΎΠ½Π½Ρ‹Ρ… полях Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ энСргий ΠΎΡ‚ 4 Π΄ΠΎ 10 ΠœΡΠ’. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлась ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° возмоТности формирования эталонных ΠΏΠΎΠ»Π΅ΠΉ Π·Π°Ρ…Π²Π°Ρ‚Π½ΠΎΠ³ΠΎ Π³Π°ΠΌΠΌΠ°-излучСния ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ источника быстрых Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² ΠΈ мишСнСй ΠΈΠ· Ρ‚ΠΈΡ‚Π°Π½Π° ΠΈ никСля с энСргиями Π΄ΠΎ 10 ΠœΡΠ’. ΠšΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½Π°Ρ ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΊΠ° ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π² эталонном спСктрС излучСния ΠΎΠ΄ΠΈΠ½ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ с извСстной энСргиСй. Π”ΠΎ 3 ΠœΡΠ’ Π·Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ Π½Π°Π±ΠΎΡ€Π° Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄Π½Ρ‹Ρ… источников ΠžΠ‘Π“Π˜. Для формирования эталонного Ρ„ΠΎΡ‚ΠΎΠ½Π½ΠΎΠ³ΠΎ поля с энСргиями Π΄ΠΎ 10 ΠœΡΠ’ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π·Π°Ρ…Π²Π°Ρ‚Π½ΠΎΠ΅ Π³Π°ΠΌΠΌΠ°-ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΎΡ‚ мишСнСй ΠΈΠ· Ρ‚ΠΈΡ‚Π°Π½Π° ΠΈ никСля, находящихся Π² ΠΏΠΎΠ»Π΅ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Ρ… Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ². ΠŸΠΎΡ‚ΠΎΠΊ Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² с Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹ΠΌΠΈ энСргиями ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΠ΅ΠΌ быстрых Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² ΠΎΡ‚ Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄Π½Ρ‹Ρ… источников 238Pu-Be, 252Cf, 241Am-Be. Π’ качСствС замСдлитСля Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ водородосодСрТащиС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ (полиэтилСн ΠΈ ΠΏΠ°Ρ€Π°Ρ„ΠΈΠ½). ΠšΠΎΠ»Π»ΠΈΠΌΠ°Ρ‚ΠΎΡ€ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Ρ… Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² установки ΠΏΠΎΠ²Π΅Ρ€ΠΎΡ‡Π½ΠΎΠΉ Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ излучСния (УПН-АВ140, УП Β«ΠΠ’ΠžΠœΠ’Π•Π₯Β») Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΠ΅Ρ‚ ΠΏΡƒΡ‡ΠΎΠΊ ΠΎΡ‚ Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄Π½ΠΎΠ³ΠΎ источника со Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Ρ… энСргий. Π Π°Π·ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ мишСнСй Π² ΠΊΠ°Π½Π°Π»Π΅ ΠΊΠΎΠ»Π»ΠΈΠΌΠ°Ρ‚ΠΎΡ€Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΏΠΎΠ»Π΅ Π³Π°ΠΌΠΌΠ°-излучСния с Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΌΠΈ для ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° мишСни энСргиями. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ спСктры ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π½Π° спСктромСтричСском Π±Π»ΠΎΠΊΠ΅ дСтСктирования Π‘Π”ΠšΠ“-19М NaI(Tl) 63β€ŠΓ—β€Š160 ΠΌΠΌ с Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ характСристикой прСобразования ΠΊΠ°Π½Π°Π»-энСргия Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΄ΠΎ 10 ΠœΡΠ’. На спСктрах Ρ…ΠΎΡ€ΠΎΡˆΠΎ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΌΡ‹ основныС Π»ΠΈΠ½ΠΈΠΈ Π·Π°Ρ…Π²Π°Ρ‚Π½ΠΎΠ³ΠΎ излучСния ΠΎΡ‚ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π°, Ρ‚ΠΈΡ‚Π°Π½Π° ΠΈ никСля. Π’ качСствС Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΡ‚Ρ€Π°ΠΆΠ°Ρ‚Π΅Π»ΡŒ Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² ΠΈΠ· полиэтилСна ΠΈ свинцовыС диски. Показано, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ дисков ΠΈΠ· свинца Π² ΠΊΠΎΠ»Π»ΠΈΠΌΠ°Ρ‚ΠΎΡ€Π΅ ΠΏΠ΅Ρ€Π΅Π΄ мишСнью позволяСт Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ²Π°Ρ‚ΡŒ вСсь спСктр, ΠΏΡ€ΠΈ этом Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ослабляя ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΡ‚ мишСни. На основании тСорСтичСских ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΊΠΈ спСктромСтров Π³Π°ΠΌΠΌΠ°-излучСния Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΄ΠΎ 10 ΠœΡΠ’ Π² ΠΏΠΎΠ»Π΅ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π·Π°Ρ…Π²Π°Ρ‚Π½ΠΎΠ³ΠΎ Π³Π°ΠΌΠΌΠ°-излучСния.
    • …
    corecore