46 research outputs found

    Measurement of spin memory lengths in PdNi and PdFe ferromagnetic alloys

    Full text link
    Weakly ferromagnetic alloys are being used by several groups in the study of superconducting/ferromagnetic hybrid systems. Because spin-flip and spin-orbit scattering in such alloys disrupt the penetration of pair correlations into the ferromagnetic material, it is desirable to have a direct measurement of the spin memory length in such alloys. We have measured the spin memory length at 4.2 K in sputtered Pd0.88Ni0.12 and Pd0.987Fe0.013 alloys using methods based on current-perpendicular-to-plane giant magnetoresistance. The alloys are incorporated into hybrid spin valves of various types, and the spin memory length is determined by fits of the Valet-Fert spin-transport equations to data of magnetoresistance vs. alloy thickness. For the case of PdNi alloy, the resulting values of the spin memory length are lsf(PdNi) = 2.8 +/- 0.5 nm and 5.4 +/- 0.6 nm, depending on whether or not the PdNi is exchange biased by an adjacent Permalloy layer. For PdFe, the spin memory length is somewhat longer, lsf(PdFe) = 9.6 +/- 2 nm, consistent with earlier measurements indicating lower spin-orbit scattering in that material. Unfortunately, even the longer spin memory length in PdFe may not be long enough to facilitate observation of spin-triplet superconducting correlations predicted to occur in superconducting/ferromagnetic hybrid systems in the presence of magnetic inhomogeneity.Comment: 7 pages, 8 figure

    Spin Triplet Supercurrent in Co/Ni Multilayer Josephson Junctions with Perpendicular Anisotropy

    Full text link
    We have measured spin-triplet supercurrent in Josephson junctions of the form S/F'/F/F'/S, where S is superconducting Nb, F' is a thin Ni layer with in-plane magnetization, and F is a Ni/[Co/Ni]n multilayer with out-of-plane magnetization. The supercurrent in these junctions decays very slowly with F-layer thickness, and is much larger than in similar junctions not containing the two F' layers. Those two features are the characteristic signatures of spin-triplet supercurrent, which is maximized by the orthogonality of the magnetizations in the F and F' layers. Magnetic measurements confirm the out-of-plane anisotropy of the Co/Ni multilayers. These samples have their critical current optimized in the as-prepared state, which will be useful for future applications.Comment: 4 pages, 4 figures, formatted in RevTeX version 4. Submitted to Physical Review B on August 13th, 201

    Characteristics of strong ferromagnetic Josephson junctions with epitaxial barriers

    Get PDF
    We present the measurement of superconductor/ferromagnetic Josephson junctions, based on an epitaxial Nb bottom electrode and epitaxial Fe20Ni80 barrier. Uniform junctions have been fabricated with a barrier thicknesses in the range 2-12 nm. The maximum critical current density similar to 2.4 +/- 0.2 x 10(9) Am-2 was found for a device with a 3-nm-thick barrier at 4.2 K, corresponding to an average characteristic voltage ICRN similar to 16 mu V. The ICRN showed a nonmonotonic behavior with Fe20Ni80 thickness. The variation of the resistance of a unit area AR(N), of the junctions with barrier thickness gave a Nb/Py specific interface resistance of 6.0 +/- 0.5 f Omega m(2) and Fe20Ni80 resistivity of 174 +/- 50 n Omega m, consistent with other studies in polycrystalline samples

    Spin transfer torques in nonlocal lateral spin valve

    Full text link
    We report a theoretical study on the spin and electron transport in the nonlocal lateral spin valve with non-collinear magnetic configuration. The nonlocal magnetoresistance, defined as the voltage difference on the detection lead over the injected current, is derived analytically. The spin transfer torques on the detection lead are calculated. It is found that spin transfer torques are symmetrical for parallel and antiparallel magnetic configurations, which is different from that in conventional sandwiched spin valve.Comment: 7 papges, 5 figure

    Current-Induced Magnetization Switching in Permalloy-based Nanopillars with Cu, Ag, and Au

    Full text link
    We compare magnetoresistances (MR) and switching currents (I_s) at room temperature (295K) and 4.2K for Permalloy/N/Permalloy nanopillars undergoing current-induced magnetization switching (CIMS), with non-magnetic metals N = Cu, Ag, and Au. The N-metal thickness is held fixed at 10 nm. Any systematic differences in MR and I_s for the different N-metals are modest, suggesting that Ag and Au represent potentially viable alternatives for CIMS studies and devices to the more widely used Cu.Comment: Submitted for Magnetism Conference, MMM-0

    Supercurrent in ferromagnetic Josephson junctions with heavy-metal interlayers. II. Canted magnetization

    Get PDF
    It has been suggested by theoretical works that equal-spin triplet pair correlations can be generated in Josephson junctions containing both a ferromagnet and a source of spin-orbit coupling. Our recent experimental work suggested that such triplet correlations were not generated by a Pt spin-orbit coupling layer when the ferromagnetic weak link had entirely in-plane anisotropy [Satchell and Birge, Phys. Rev. B 97, 214509 (2018)]. Here, we revisit the experiment using Pt again as a source for spin-orbit coupling and a [Co(0.4 nm)/Ni(0.4 nm)]×8/Co(0.4 nm) ferromagnetic weak link with both in-plane and out-of-plane magnetization components (canted magnetization). The canted magnetization more closely matches theoretical predictions than our previous experimental work. Our results suggest that there is no supercurrent contribution in our junctions from equal-spin triplet pair correlations. In addition, this work includes systematic study of supercurrent dependence on Cu interlayer thickness, a common additional layer used to buffer the growth of the ferromagnet and which for Co may significantly improve the growth morphology. We report that the supercurrent in the [Co(0.4 nm)/Ni(0.4 nm)]×8/Co(0.4 nm) ferromagnetic weak links can be enhanced by over two orders of magnitude by tuning the Cu interlayer thickness. This result has important application in superconducting spintronics, where large critical currents are desirable for devices
    corecore