294 research outputs found

    Individually distinctive features facilitate numerical discrimination of sets of objects in domestic chicks

    Get PDF
    Day-old domestic chicks approach the larger of two groups of identical objects, but in a 3 vs 4 comparison, their performance is random. Here we investigated whether adding individually distinctive features to each object would facilitate such discrimination. Chicks reared with 7 objects were presented with the operation 1 + 1 + 1 vs 1 + 1 + 1 + 1. When objects were all identical, chicks performed randomly, as expected (Experiment 1). In the remaining experiments, objects differed from one another due to additional features. Chicks succeeded when those features were differently oriented segments (Experiment 2) but failed when the features were arranged to depict individually different face-like displays (Experiment 3). Discrimination was restored if the face-like stimuli were presented upside-down, disrupting global processing (Experiment 4). Our results support the claim that numerical discrimination in 3 vs 4 comparison benefits from the presence of distinctive features that enhance object individuation due to individual processing. Interestingly, when the distinctive features are arranged into upright face-like displays, the process is susceptible to global over local interference due to configural processing. This study was aimed at assessing whether individual object processing affects numerical discrimination. We hypothesise that in humans similar strategies aimed at improving performance at the non-symbolic level may have positive effects on symbolic mathematical abilities

    First Report of ‘CandidatusLiberibacter asiaticus’ Associated with Huanglongbing in Sweet Orange in Ethiopia

    Get PDF
    Huanglongbing (HLB) is a serious disease of citrus worldwide. Three different ‘Candidatus Liberibacter’ species are associated with HLB: ‘Ca. Liberibacter asiaticus’, ‘Ca. L. africanus’, and ‘Ca. L. americanus’ (1). ‘Ca. L. africanus’ and its vector, Trioza erytreae, are both heat sensitive, and when present, occur in citrus when temperatures remain below 30 to 32°C. In Africa, ‘Ca. L. africanus’ and T. erytreae have been reported in South Africa, Zimbabwe, Malawi, Burundi, Kenya, Somalia, Ethiopia, Cameroon, and Madagascar (1). Inspection of citrus trees in orchards and budwood sources in nurseries located in the warmer citrus-growing areas of Tigray and North Wollo in northern Ethiopia revealed nearly 100 trees with symptoms of leaf yellowing with a blotchy mottle pattern, dead branches, and decreased fruit quality and yield. Two symptomatic sweet orange budwood trees and three symptomatic orchard plants were sampled in April 2009, along with three healthy-looking sweet orange plants. DNA was extracted from 200 mg of desiccated leaf midribs using the CTAB method (4) and subjected to conventional PCR using the primer pairs A2/J5 (2) and OI2/23S1 (3) that amplify the ribosomal protein gene in the rplKAJL-rpoBC operon and the 16S/23S ribosomal intergenic regions, respectively, of ‘Ca. L. africanus’ and ‘Ca. L. asiaticus’. Positive PCR reactions were obtained for all five symptomatic samples with both primer pairs. PCR amplicons of 703 bp (A2/J5) and 892 bp (OI2/23S) recovered from two of these samples were purified, cloned, and sequenced. BLAST analysis revealed that the nucleotide sequences we obtained for the ribosomal protein (GenBank Accessions Nos. GQ890155 and GQ890156) shared 100% identity with each other and 99% identity with sequences of ‘Ca. L. asiaticus’ from Brazil (DQ471904), Indonesia (AB480161), China (DQ157277), and Florida (CP001677). Similarly, the 16S/23S ribosomal intergenic sequences (GU296538 and GU296539) shared 100% identity with each other and 99% identity with homologous ‘Ca. L. asiaticus’ sequences from Brazil (DQ471903), Indonesia (AB480102), China (DQ778016), and Florida (CP001677) and contained two tRNA genes as occurs in ‘Ca. L. asiaticus’ but not in ‘Ca. L. africanus’ (3). To our knowledge, this is the first report of ‘Ca. L. asiaticus’ in Africa. The presence of ‘Ca. L. asiaticus’ is a threat for warmer citrus-growing areas of Africa that are less favorable for ‘Ca. L. africanus’ and T. erytreae. In areas where ‘Ca. L. asiaticus’ was confirmed, symptomatic trees must be promptly eradicated and surveys to determine spread of the disease and its vectors are necessary

    A new variant of Xylella fastidiosa subspecies multiplex detected in different host plants in the recently emerged outbreak in the region of Tuscany, Italy

    Get PDF
    The vector-borne bacterial pathogen Xylella fastidiosa is widely distributed in the Americas; in the last decade it has emerged as a serious threat for agricultural crops, natural environment and landscape in Europe. Following the first EU outbreak in 2013 in southern Italy, associated with a severe disease in olive trees, annual mandatory surveys are now in place in the Member States, leading to the discovery of bacterial outbreaks in different countries. Among the latest findings, an outbreak has been reported in the Italian region of Tuscany, with infections identified in seven different plant species. In this work, we report the isolation and the genetic characterization of isolates associated with this newly discovered outbreak. Multilocus sequence typing approach revealed the occurrence of isolates harbouring a new sequence type, denoted ST87, genetically related to strains of subsp. multiplex, but different from the genotypes of this subspecies previously characterized in Europe. Five cultured strains were successfully recovered from four of the seven host plants, an important achievement for advancing the studies on genomics and pathogenicity of these isolates and thus assess their potential threat for European agriculture

    Intercepted isolates of Xylella fastidiosa in Europe reveal novel genetic diversity

    Get PDF
    After the first confirmed outbreak of Xylella fastidiosa in the European Union (EU), associated with an olive disease denoted olive quick decline syndrome, mandatory surveys are now carried out in the member States and inspections increased at EU entry points such as ports. Such activities led to the interception of X. fastidiosa-infected coffee plants in consignments originating from Central America. Similarly, the geographic expansion of the olive decline epidemic area of the Apulia region (southern Italy) prompted investigations to identify new host plants. Here we report the interception of three novel bacterial sequence types in Italy, based on multi-locus sequence typing, that cluster with different X. fastidiosa subspecies, illustrating the risk of the introduction of additional pathogen genetic diversity into Europe. In the epidemic area of Apulia, new foci as well as host plant species positive with X. fastidiosa, including cherry, myrtleleaf and rosemary, were found to be all infected with the same sequence type of this bacterium (ST53, or CoDiRO strain). This work highlights the limited knowledge of X. fastidiosa phylogenetic and phenotypic diversity, the risk of novel X. fastidiosa introductions via contaminated plant material, and corroborates other studies indicating that the Apulia epidemic emerged from a single introduction of this pathogen into the region

    Next-generation sequencing and metagenomic analysis advances plant virus diagnosis and discovery

    Get PDF
    The advent of next generation sequencing (NGS) technologies dramatically advanced our ability to comprehensively investigate diseases of unknown etiology and expedited the entire process of virus discovery, identification, viral genome sequencing and, subsequently, the development of routine assays for new viral pathogens. Unlike traditional techniques, these novel approaches require no preliminary knowledge of the suspected virus(es). Currently, the RNA-Seq approach has been widely used to identify new viruses in infected plants, by analyzing virus-derived small interfering RNA populations, single- and double-stranded RNA (dsRNA) molecules extracted from infected plants. The method generates sequence in an unbiased fashion, likely allowing to detect all viruses that are present in a sample. We applied the Illumina NGS, coupled with metagenomic analysis, to generate large sequence dataset in different woody crops affected by diseases of unknown origin or infected with uncharacterized viruses or new strains. This approach allowed the identification of five novel viral species and, in addition, the sequencing of the whole genome of several viruses and viroids infecting Citrus spp., Prunus spp., grapes, fig, hazelnut, olive, persimmon and mulberry. Combined analysis of the datasets generated by using either siRNA fractions and dsRNA templates, enhanced the characterization of the whole virus-derived sequences in the infected tissues. Furthermore, profiling small RNAs from virus-infected plants led to a better understanding of host-plant response to virus and viroid infections in perennial plants. A general bioinformatic pipeline and an experimental validation strategy were developed and its application illustrated

    Centrality dependence of the expansion dynamics in Pb-Pb collisions at 158 A GeV/c

    Get PDF
    Two-particle correlation functions of negatively charged hadrons from Pb-Pb collisions at 158 GeV/c per nucleon have been measured by the WA97 experiment at the CERN SPS. A Coulomb correction procedure that assumes an expanding source has been implemented. Within the framework of an expanding thermalized source model the size and dynamical state of the collision fireball at freeze-out have been reconstructed as a function of the centrality of the collision. Less central collisions exhibit a different dynamics than central ones: both transverse and longitudinal expansion velocities are slower, the expansion duration is shorter and the system freezes out showing smaller dimensions and higher temperature.Comment: 22 pages, 11 figures, Te
    • …
    corecore