17 research outputs found

    A novel heterozygous variant in FGF9 associated with previously unreported features of multiple synostosis syndrome 3

    No full text
    Human multiple synostoses syndrome 3 is an autosomal dominant disorder caused by pathogenic variants in FGF9. Only two variants have been described in FGF9 in humans so far, and one in mice. Here we report a novel missense variant c.566C>G, p.(Pro189Arg) in FGF9. Functional studies showed this variant impairs FGF9 homodimerization, but not FGFR3c binding. We also review the findings of cases reported previously and report on additional features not described previously

    Ab initio molecular dynamics simulations of the cooperative adsorption of Hydrazine and water on copper surfaces: implications for shape control of nanoparticles

    No full text
    We have used density functional theory and ab initio molecular dynamics simulations to pursue an accurate description of the hydrazine–water system adsorbed on low-index surfaces of copper. Experimental evidence suggests that shape control in the reverse micelle synthesis of nanoparticles may be affected by differences in interactions of the reducing agent (hydrazine) with the surfaces. First, we have modeled the competitive adsorption of single molecules of water and hydrazine from the gas phase, which, however, shows no preference for selective adsorption. Subsequent molecular dynamics simulations of a system of hydrazine cooperatively adsorbed with a hydration shell reveals a strong influence on the adsorption behavior from the network of hydrogen bonding. A comparison of the thermodynamics of simulations with and without hydrazine adsorbed at the surface suggests that hydrazine will adsorb on the (111) surface but not on the (100) surface. These findings explain the experimental crystal shapes induced by reducing agent through a mechanism of binding to and accelerating the growth of the (111) faces
    corecore