827 research outputs found

    Resonance lamp absorption measurement of OH number density and temperature in expansion tube scramjet engine tests

    Get PDF
    In this paper, we report results of hydroxyl radical and static temperature measurements performed in the General Applied Science Laboratories-NASA HYPULSE expansion tube facility using the microwave resonance lamp absorption technique. Data were obtained as part of a series of hydrogen/air and hydrogen/oxygen combustion tests at stagnation enthalpies corresponding to Mach 17 flight speeds. Data from a representative injector configuration is compared to a full Navier-Stokes CFD solution

    From least cost to least risk: producing climate change mitigation plans that are resilient to multiple risks

    Get PDF
    Our plans to tackle climate change could be thrown off-track by shocks such as the coronavirus pandemic, the energy supply crisis driven by the Russian invasion of Ukraine, financial crises and other such disruptions. We should therefore identify plans which are as resilient as possible to future risks, by systematically understanding the range of risks to which mitigation plans are vulnerable and how best to reduce such vulnerabilities. Here, we use electricity system decarbonization as a focus area, to highlight the different types of technological solutions, the different risks that may be associated with them, and the approaches, situated in a decision-making under deep uncertainty (DMDU) paradigm, that would allow the identification and enhanced resilience of mitigation pathways

    The effects of graduate training on reasoning: Formal discipline and thinking about everyday life events

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92173/1/TheEffectsOfGraduateTraining.pd

    Atomic Oxygen (ATOX) simulation of Teflon FEP and Kapton H surfaces using a high intensity, low energy, mass selected, ion beam facility

    Get PDF
    A high intensity (greater than 10(exp 15) ions/sq cm) low energy (down to 5 eV) mass selected ion beam (MSIB) facility was used to study the effects of ATOX on two polymers commonly used for space applications (Kapton H and Teflon FEP). The polymers were exposed to O(+) and Ne(+) fluences on 10(exp 15) - 10(exp 19) ions/sq cm, using 30eV ions. A variety of analytical methods were used to analyze the eroded surfaces including: (1) atomic force microscopy (AFM) for morphology measurements; (2) total mass loss measurements using a microbalance; (3) surface chemical composition using x-ray photoelectron spectroscopy (XPS), and (4) residual gas analysis (RGA) of the released gases during bombardment. The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of Ne(+) and O(+) bombardment. For 30 eV ions it was found that the Kapton is eroded via chemical mechanisms while Teflon FEP is eroded via collisional mechanisms. AFM analysis was found very powerful in revealing the evolution of the damage from its initial atomic scale (roughness of approx. 1 nm) to its final microscopic scale (roughness greater than 1 micron). Both the surface morphology and the average roughness of the bombarded surfaces (averaged over 1 micron x 1 micron images by the system's computer) were determined for each sample. For 30 eV a non linear increase of the Kapton roughness with the O(+) fluence was discovered (a slow increase rate for fluences phi less than 5 x 10(exp 17) O(+)/sq cm, and a rapid increase rate for phi greater than 5 x 10(exp 17) O(+)/sq cm). Comparative studies on the same materials exposed to RF and DC oxygen plasmas indicate that the specific details of the erosion depend on the simulation facility emphasizing the advantages of the ion beam facility

    Demonstration and Analysis of Filtered Rayleigh Scattering Flow Field Diagnostic System

    Get PDF
    Filtered Rayleigh Scattering (FRS) is a diagnostic technique which measures velocity, temperature, and pressure by determining Doppler shift, total intensity, and spectral line shape of laser induced Rayleigh-Brillouin scattering. In the work reported here, this is accomplished by using a narrow line width, injection seeded Nd-YAG laser sheet to induce Rayleigh-Brillouin scattering from a gas flow. This light is passed through an optical notch filter, and transmitted light is imaged onto an intensified charge coupled display (CCD) camera. By monitoring the grayscale value at a particular pixel while the laser frequency is tuned, the convolution between the Rayleigh-Brillouin scattering profile and the filter transmission profile is attained. Since the filter profile can be independently measured, it can be deconvolved from the measuring signal, yielding the Rayleigh-Brillouin scattering profile. From this profile, flow velocity, temperature, and pressure are determined. In this paper the construction and characterization of the optical notch filter and a newly developed frequency apparatus are discussed

    Life Sciences, Technology, and the Law - Symosium Transcript - March 7, 2003

    Get PDF
    Life sciences, Technology, and the Law Symposium held at the University of Michigan Law School Friday, March 7, 200

    MHz-Rate NO PLIF Imaging in a Mach 10 Hypersonic Wind Tunnel

    Get PDF
    NO PLIF imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 inch Mach 10 hypersonic wind tunnel. Approximately two hundred time correlated image sequences, of between ten and twenty individual frames, were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The majority of the image sequences were obtained from the boundary layer of a 20 flat plate model, in which transition was induced using a variety of cylindrical and triangular shaped protuberances. The high speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified. A series of image sequences were also obtained from a 20 compression ramp at a 10 angle of attack in which the temporal dynamics of the characteristic separated flow was captured in a time correlated manner

    A Kaehler Structure on the Space of String World-Sheets

    Full text link
    Let (M,g) be an oriented Lorentzian 4-manifold, and consider the space S of oriented, unparameterized time-like 2-surfaces in M (string world-sheets) with fixed boundary conditions. Then the infinite-dimensional manifold S carries a natural complex structure and a compatible (positive-definite) Kaehler metric h on S determined by the Lorentz metric g. Similar results are proved for other dimensions and signatures, thus generalizing results of Brylinski regarding knots in 3-manifolds. Generalizing the framework of Lempert, we also investigate the precise sense in which S is an infinite-dimensional complex manifold.Comment: 13 pages, LaTe

    Control of experimental uncertainties in filtered Rayleigh scattering measurements

    Get PDF
    Filtered Rayleigh Scattering is a technique which allows for measurement of velocity, temperature, and pressure in unseeded flows, spatially resolved in 2-dimensions. We present an overview of the major components of a Filtered Rayleigh Scattering system. In particular, we develop and discuss a detailed theoretical model along with associated model parameters and related uncertainties. Based on this model, we then present experimental results for ambient room air and for a Mach 2 free jet, including spatially resolved measurements of velocity, temperature, and pressure
    • …
    corecore