422 research outputs found

    Plasma Sterilization Technology for Spacecraft Applications

    Get PDF
    The application of plasma gas technology to sterilization and decontamination of spacecraft components is considered. Areas investigated include: effective sterilizing ranges of four separate gases; lethal constituents of a plasma environment; effectiveness of plasma against a diverse group of microorganisms; penetrating efficiency of plasmas for sterilization; and compatibility of spacecraft materials with plasma environments. Results demonstrated that plasma gas, specifically helium plasma, is a highly effective sterilant and is compatible with spacecraft materials

    Object-oriented Programming Laws for Annotated Java Programs

    Full text link
    Object-oriented programming laws have been proposed in the context of languages that are not combined with a behavioral interface specification language (BISL). The strong dependence between source-code and interface specifications may cause a number of difficulties when transforming programs. In this paper we introduce a set of programming laws for object-oriented languages like Java combined with the Java Modeling Language (JML). The set of laws deals with object-oriented features taking into account their specifications. Some laws deal only with features of the specification language. These laws constitute a set of small transformations for the development of more elaborate ones like refactorings

    Probability distribution of arrival times in quantum mechanics

    Get PDF
    In a previous paper [V. Delgado and J. G. Muga, Phys. Rev. A 56, 3425 (1997)] we introduced a self-adjoint operator T^(X)\hat {{\cal T}}(X) whose eigenstates can be used to define consistently a probability distribution of the time of arrival at a given spatial point. In the present work we show that the probability distribution previously proposed can be well understood on classical grounds in the sense that it is given by the expectation value of a certain positive definite operator J^(+)(X)\hat J^{(+)}(X) which is nothing but a straightforward quantum version of the modulus of the classical current. For quantum states highly localized in momentum space about a certain momentum p0≠0p_0 \neq 0, the expectation value of J^(+)(X)\hat J^{(+)}(X) becomes indistinguishable from the quantum probability current. This fact may provide a justification for the common practice of using the latter quantity as a probability distribution of arrival times.Comment: 21 pages, LaTeX, no figures; A Note added; To be published in Phys. Rev.

    Flexible Invariants Through Semantic Collaboration

    Full text link
    Modular reasoning about class invariants is challenging in the presence of dependencies among collaborating objects that need to maintain global consistency. This paper presents semantic collaboration: a novel methodology to specify and reason about class invariants of sequential object-oriented programs, which models dependencies between collaborating objects by semantic means. Combined with a simple ownership mechanism and useful default schemes, semantic collaboration achieves the flexibility necessary to reason about complicated inter-object dependencies but requires limited annotation burden when applied to standard specification patterns. The methodology is implemented in AutoProof, our program verifier for the Eiffel programming language (but it is applicable to any language supporting some form of representation invariants). An evaluation on several challenge problems proposed in the literature demonstrates that it can handle a variety of idiomatic collaboration patterns, and is more widely applicable than the existing invariant methodologies.Comment: 22 page

    Tunneling Time in the Landau-Zener Model

    Full text link
    We give a general definition for the tunneling time in the Landau-Zener model. This definition allows us to compute numerically the Landau-Zener tunneling time at any sweeping rate without ambiguity. We have also obtained analytical results in both the adiabatic limit and the sudden limit. Whenever applicable, our results are compared to previous results and they are in good agreement.Comment: 7pages, 9 figure

    Possibility of the tunneling time determination

    Full text link
    We show that it is impossible to determine the time a tunneling particle spends under the barrier. However, it is possible to determine the asymptotic time, i.e., the time the particle spends in a large area including the barrier. We propose a model of time measurements. The model provides a procedure for calculation of the asymptotic tunneling and reflection times. The model also demonstrates the impossibility of determination of the time the tunneling particle spends under the barrier. Examples for delta-form and rectangular barrier illustrate the obtained results.Comment: 8 figure

    Specifying Reusable Components

    Full text link
    Reusable software components need expressive specifications. This paper outlines a rigorous foundation to model-based contracts, a method to equip classes with strong contracts that support accurate design, implementation, and formal verification of reusable components. Model-based contracts conservatively extend the classic Design by Contract with a notion of model, which underpins the precise definitions of such concepts as abstract equivalence and specification completeness. Experiments applying model-based contracts to libraries of data structures suggest that the method enables accurate specification of practical software

    Strong quantum violation of the gravitational weak equivalence principle by a non-Gaussian wave-packet

    Full text link
    The weak equivalence principle of gravity is examined at the quantum level in two ways. First, the position detection probabilities of particles described by a non-Gaussian wave-packet projected upwards against gravity around the classical turning point and also around the point of initial projection are calculated. These probabilities exhibit mass-dependence at both these points, thereby reflecting the quantum violation of the weak equivalence principle. Secondly, the mean arrival time of freely falling particles is calculated using the quantum probability current, which also turns out to be mass dependent. Such a mass-dependence is shown to be enhanced by increasing the non-Gaussianity parameter of the wave packet, thus signifying a stronger violation of the weak equivalence principle through a greater departure from Gaussianity of the initial wave packet. The mass-dependence of both the position detection probabilities and the mean arrival time vanish in the limit of large mass. Thus, compatibility between the weak equivalence principle and quantum mechanics is recovered in the macroscopic limit of the latter. A selection of Bohm trajectories is exhibited to illustrate these features in the free fall case.Comment: 11 pages, 7 figure
    • …
    corecore