283 research outputs found
The complete Hard X Ray Burst Spectrometer event list, 1980-1989
This event list is a comprehensive reference for all Hard X ray bursts detected with the Hard X Ray Burst Spectrometer on the Solar Maximum Mission from the time of launch on Feb. 14, 1980 to the end of the mission in Dec. 1989. Some 12,776 events were detected in the energy range 30 to 600 keV with the vast majority being solar flares. This list includes the start time, peak time, duration, and peak rate of each event
The hard X-ray burst spectrometer event listing 1980-1987
This event listing is a comprehensive reference for the Hard X-ray bursts detected with the Hard X-ray Burst Spectrometer on the Solar Maximum Mission from the time of launch 14 February 1980 to December 1987. Over 8600 X-ray events were detected in the energy range from 30 to approx. 600 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event
Short- and Medium-term Atmospheric Effects of Very Large Solar Proton Events
Long-term variations in ozone have been caused by both natural and humankind related processes. In particular, the humankind or anthropogenic influence on ozone from chlorofluorocarbons and halons (chlorine and bromine) has led to international regulations greatly limiting the release of these substances. These anthropogenic effects on ozone are most important in polar regions and have been significant since the 1970s. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the short- and medium-term (days to a few months) influences of solar proton events between 1963 and 2005 on stratospheric ozone. The four largest events in the past 45 years (August 1972; October 1989; July 2000; and October-November 2003) caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen- containing compounds, which led to the polar ozone destruction. The hydrogen-containing compounds have very short lifetimes and lasted for only a few days (typically the duration of the solar proton event). On the other hand, the nitrogen-containing compounds lasted much longer, especially in the Winter. The nitrogen oxides were predicted to increase substantially due to these solar events and led to mid- to upper polar stratospheric ozone decreases of over 20%. These WACCM results generally agreed with satellite measurements. Both WACCM and measurements showed enhancements of nitric acid, dinitrogen pentoxide, and chlorine nitrate, which were indirectly caused by these solar events. Solar proton events were shown to cause a significant change in the polar stratosphere and need to be considered in understanding variations during years of strong solar activity
SBUV version 8.6 Retrieval Algorithm: Error Analysis and Validation Technique
SBUV version 8.6 algorithm was used to reprocess data from the Back Scattered Ultra Violet (BUV), the Solar Back Scattered Ultra Violet (SBUV) and a number of SBUV/2 instruments, which 'span a 41-year period from 1970 to 2011 (except a 5-year gap in the 1970s)[see Bhartia et al, 2012]. In the new version Daumont et al. [1992] ozone cross section were used, and new ozone [McPeters et ai, 2007] and cloud climatologies Doiner and Bhartia, 1995] were implemented. The algorithm uses the Optimum Estimation technique [Rodgers, 2000] to retrieve ozone profiles as ozone layer (partial column, DU) on 21 pressure layers. The corresponding total ozone values are calculated by summing ozone columns at individual layers. The algorithm is optimized to accurately retrieve monthly zonal mean (mzm) profiles rather than an individual profile, since it uses monthly zonal mean ozone climatology as the A Priori. Thus, the SBUV version 8.6 ozone dataset is better suited for long-term trend analysis and monitoring ozone changes rather than for studying short-term ozone variability. Here we discuss some characteristics of the SBUV algorithm and sources of error in the SBUV profile and total ozone retrievals. For the first time the Averaging Kernels, smoothing errors and weighting functions (or Jacobians) are included in the SBUV metadata. The Averaging Kernels (AK) represent the sensitivity of the retrieved profile to the true state and contain valuable information about the retrieval algorithm, such as Vertical Resolution, Degrees of Freedom for Signals (DFS) and Retrieval Efficiency [Rodgers, 2000]. Analysis of AK for mzm ozone profiles shows that the total number of DFS for ozone profiles varies from 4.4 to 5.5 out of 6-9 wavelengths used for retrieval. The number of wavelengths in turn depends on solar zenith angles. Between 25 and 0.5 hPa, where SBUV vertical resolution is the highest, DFS for individual layers are about 0.5
Estimation of Smoothing Error in SBUV Profile and Total Ozone Retrieval
Data from the Nimbus-4, Nimbus-7 Solar Backscatter Ultra Violet (SBUV) and seven of the NOAA series of SBUV/2 instruments spanning 41 years are being reprocessed using V8.6 algorithm. The data are scheduled to be released by the end of August 2011. An important focus of the new algorithm is to estimate various sources of errors in the SBUV profiles and total ozone retrievals. We discuss here the smoothing errors that describe the components of the profile variability that the SBUV observing system can not measure. The SBUV(/2) instruments have a vertical resolution of 5 km in the middle stratosphere, decreasing to 8 to 10 km below the ozone peak and above 0.5 hPa. To estimate the smoothing effect of the SBUV algorithm, the actual statistics of the fine vertical structure of ozone profiles must be known. The covariance matrix of the ensemble of measured ozone profiles with the high vertical resolution would be a formal representation of the actual ozone variability. We merged the MLS (version 3) and sonde ozone profiles to calculate the covariance matrix, which in general case, for single profile retrieval, might be a function of the latitude and month. Using the averaging kernels of the SBUV(/2) measurements and calculated total covariance matrix one can estimate the smoothing errors for the SBUV ozone profiles. A method to estimate the smoothing effect of the SBUV algorithm is described and the covariance matrixes and averaging kernels are provided along with the SBUV(/2) ozone profiles. The magnitude of the smoothing error varies with altitude, latitude, season and solar zenith angle. The analysis of the smoothing errors, based on the SBUV(/2) monthly zonal mean time series, shows that the largest smoothing errors were detected in the troposphere and might be as large as 15-20% and rapidly decrease with the altitude. In the stratosphere above 40 hPa the smoothing errors are less than 5% and between 10 and 1 hPa the smoothing errors are on the order of 1%. We validate our estimated smoothing errors by comparing the SBUV ozone profiles with other ozone profiling sensors
Short- and medium-term atmospheric constituent effects of very large solar proton events
International audienceSolar eruptions sometimes produce protons, which impact the Earth's atmosphere. These solar proton events (SPEs) generally last a few days and produce high energy particles that precipitate into the Earth's atmosphere. The protons cause ionization and dissociation processes that ultimately lead to an enhancement of odd-hydrogen and odd-nitrogen in the polar cap regions (>60° geomagnetic latitude). We have used the Whole Atmosphere Community Climate Model (WACCM3) to study the atmospheric impact of SPEs over the period 1963?2005. The very largest SPEs were found to be the most important and caused atmospheric effects that lasted several months after the events. We present the short- and medium-term (days to a few months) atmospheric influence of the four largest SPEs in the past 45 years (August 1972; October 1989; July 2000; and October?November 2003) as computed by WACCM3 and observed by satellite instruments. Polar mesospheric NOx (NO+NO2) increased by over 50 ppbv and mesospheric ozone decreased by over 30% during these very large SPEs. Changes in HNO3, N2O5, ClONO2, HOCl, and ClO were indirectly caused by the very large SPEs in October?November 2003, were simulated by WACCM3, and previously measured by Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). WACCM3 output was also represented by sampling with the MIPAS averaging kernel for a more valid comparison. Although qualitatively similar, there are discrepancies between the model and measurement with WACCM3 predicted HNO3 and ClONO2 enhancements being smaller than measured and N2O5 enhancements being larger than measured. The HOCl enhancements were fairly similar in amounts and temporal variation in WACCM3 and MIPAS. WACCM3 simulated ClO decreases below 50 km, whereas MIPAS mainly observed increases, a very perplexing difference. Upper stratospheric and lower mesospheric NOx increased by over 10 ppbv and was transported during polar night down to the middle stratosphere in several weeks past the SPE. The WACCM3 simulations confirmed the SH HALOE observations of enhanced NOx in September 2000 as a result of the July 2000 SPE and the NH SAGE II observations of enhanced NO2 in March 1990 as a result of the October 1989 SPEs
Highlights from a Decade of OMI-TOMS Total Ozone Observations on EOS Aura
Total ozone measurements from OMI have been instrumental in meeting Aura science objectives. In the last decade, OMI has extended the length of the TOMS total ozone record to over 35 years to monitor stratospheric ozone recovery. OMI-TOMS total ozone measurements have also been combined synergistically with measurements from other Aura instruments and MLS in particular, which provides vertically resolved information that complements the total O3 mapping capability of OMI. With this combined approach, the EOS Aura platform has produced more accurate and detailed measurements of tropospheric ozone. This has led in turn to greater understanding of the sources and transport of tropospheric ozone as well as its radiative forcing effect. The combined use of OMI and MLS data was also vital to the analysis of the severe Arctic ozone depletion event of 2011. The quality of OMI-TOMS total O3 data used in these studies is the result of several factors: a mature and well-validated algorithm, the striking stability of the OMI instrument, and OMI's hyperspectral capabilities used to derive cloud pressures. The latter has changed how we think about the effects of clouds on total ozone retrievals. We will discuss the evolution of the operational V8.5 algorithm and provide an overview and motivation for V9. After reviewing results and developments of the past decade, we finally highlight how ozone observations from EOS Aura are playing an important role in new ozone mapping missions
- …