61 research outputs found
Systematic effects on a Compton polarimeter at the focus of an X-ray mirror
XL-Calibur is a balloon-borne Compton polarimeter for X-rays in the
15-80 keV range. Using an X-ray mirror with a 12 m focal length for
collecting photons onto a beryllium scattering rod surrounded by CZT detectors,
a minimum-detectable polarization as low as 3% is expected during a
24-hour on-target observation of a 1 Crab source at 45 elevation.
Systematic effects alter the reconstructed polarization as the mirror focal
spot moves across the beryllium scatterer, due to pointing offsets, mechanical
misalignment or deformation of the carbon-fiber truss supporting the mirror and
the polarimeter. Unaddressed, this can give rise to a spurious polarization
signal for an unpolarized flux, or a change in reconstructed polarization
fraction and angle for a polarized flux. Using bench-marked Monte-Carlo
simulations and an accurate mirror point-spread function characterized at
synchrotron beam-lines, systematic effects are quantified, and mitigation
strategies discussed. By recalculating the scattering site for a shifted beam,
systematic errors can be reduced from several tens of percent to the
few-percent level for any shift within the scattering element. The treatment of
these systematic effects will be important for any polarimetric instrument
where a focused X-ray beam is impinging on a scattering element surrounded by
counting detectors.Comment: Submitted to Astroparticle Physic
Simultaneous saccharification and fermentation of hydrothermal pretreated lignocellulosic biomass: evaluation of process performance under multiple stress conditions
Industrial lignocellulosic bioethanol processes are exposed to different environmental stresses (such as inhibitor compounds, high temperature, and high solid loadings). In this study, a systematic approach was followed where the liquid and solid fractions were mixed to evaluate the influence of varied solid loadings, and different percentages of liquor were used as liquid fraction to determine inhibitor effect. Ethanol production by simultaneous saccharification and fermentation (SSF) of hydrothermally pretreated Eucalyptus globulus wood (EGW) was studied under combined diverse stress operating conditions (3038 °C, 6080 g of liquor from hydrothermal treatment or autohydrolysis (containing inhibitor compounds)/100 g of liquid and liquid to solid ratio between 4 and 6.4 g liquid in SSF/g unwashed pretreated EGW) using an industrial Saccharomyces cerevisiae strain supplemented with low-cost byproducts derived from agro-food industry. Evaluation of these variables revealed that the combination of temperature and higher solid loadings was the most significant variable affecting final ethanol concentration and cellulose to ethanol conversion, whereas solid and autohydrolysis liquor loadings had the most significant impact on ethanol productivity. After optimization, an ethanol concentration of 54 g/L (corresponding to 85 % of conversion and 0.51 g/Lh of productivity at 96 h) was obtained at 37 °C using 60 % of autohydrolysis liquor and 16 % solid loading (liquid to solid ratio of 6.4 g/g). The selection of a suitable strain along with nutritional supplementation enabled to produce noticeable ethanol titers in quite restrictive SSF operating conditions, which can reduce operating cost and boost the economic feasibility of lignocellulose-to-ethanol processes.The authors thank the financial support from the Strategic Project of UID/BIO/04469/2013 CEB Unit and A Romaní postdoctoral grant funded by Xunta of Galicia (Plan I2C, 2014)
A Role for the Unfolded Protein Response (UPR) in Virulence and Antifungal Susceptibility in Aspergillus fumigatus
Filamentous fungi rely heavily on the secretory pathway, both for the delivery of cell wall components to the hyphal tip and the production and secretion of extracellular hydrolytic enzymes needed to support growth on polymeric substrates. Increased demand on the secretory system exerts stress on the endoplasmic reticulum (ER), which is countered by the activation of a coordinated stress response pathway termed the unfolded protein response (UPR). To determine the contribution of the UPR to the growth and virulence of the filamentous fungal pathogen Aspergillus fumigatus, we disrupted the hacA gene, encoding the major transcriptional regulator of the UPR. The ΔhacA mutant was unable to activate the UPR in response to ER stress and was hypersensitive to agents that disrupt ER homeostasis or the cell wall. Failure to induce the UPR did not affect radial growth on rich medium at 37°C, but cell wall integrity was disrupted at 45°C, resulting in a dramatic loss in viability. The ΔhacA mutant displayed a reduced capacity for protease secretion and was growth-impaired when challenged to assimilate nutrients from complex substrates. In addition, the ΔhacA mutant exhibited increased susceptibility to current antifungal agents that disrupt the membrane or cell wall and had attenuated virulence in multiple mouse models of invasive aspergillosis. These results demonstrate the importance of ER homeostasis to the growth and virulence of A. fumigatus and suggest that targeting the UPR, either alone or in combination with other antifungal drugs, would be an effective antifungal strategy
Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans
Peer reviewedPublisher PD
Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production
Additional file 15. Summary of whole genome sequencing statistics
Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions
Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell--based biorefineries.This study was supported by the Portuguese Foundation for Science and Technology (FCT) by the strategic funding of UID/BIO/04469/2013 unit, MIT Portugal Program (Ph.D. grant PD/BD/128247/
2016 to Joana T. Cunha), Ph.D. grant SFRH/BD/130739/2017 to Carlos E. Costa, COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE-01-0145-FEDER-000004), YeasTempTation (ERA-IB-2-6/0001/2014), and MultiBiorefinery project (POCI-01-0145-FEDER-016403). Funding by the Institute for Bioengineering and Biosciences (IBB) from FCT (UID/BIO/04565/2013) and from Programa Operacional Regional de Lisboa 2020 (Project N. 007317) was also receiveinfo:eu-repo/semantics/publishedVersio
- …