80,336 research outputs found
High temperature stress-strain analysis
The objectives are threefold: to assist in developing predictive tools needed to improve design analyses and procedures for the efficient and accurate prediction of burner liner structural performance and response; to calibrate, validate, and evaluate these predictive tools by comparing the predicted results with the experimental data; and to evaluate existing as well as advanced temperature and strain measurement instrumentation, through both contact and noncontact efforts, in a simulated turbine engine combustor environment. As the predictive tool, tests, test methods, instrumentation, and data acquisition and reduction methods are developed and evaluated, a proven, integrated analysis/experiment method will be developed that will permit the accurate prediction of the cyclic life of a burner liner
Dynamical phase transitions in one-dimensional hard-particle systems
We analyse a one-dimensional model of hard particles, within ensembles of
trajectories that are conditioned (or biased) to atypical values of the
time-averaged dynamical activity. We analyse two phenomena that are associated
with these large deviations of the activity: phase separation (at low activity)
and the formation of hyperuniform states (at high activity). We consider a
version of the model which operates at constant volume, and a version at
constant pressure. In these non-equilibrium systems, differences arise between
the two ensembles, because of the extra freedom available to the
constant-pressure system, which can change its total density. We discuss the
relationships between different ensembles, mechanical equilibrium, and the
probability cost of rare density fluctuations.Comment: 11 pages, 11 figure
A computer analysis program for interfacing thermal and structural codes
A software package has been developed to transfer three-dimensional transient thermal information accurately, efficiently, and automatically from a heat transfer analysis code to a structural analysis code. The code is called three-dimensional TRansfer ANalysis Code to Interface Thermal and Structural codes, or 3D TRANCITS. TRANCITS has the capability to couple finite difference and finite element heat transfer analysis codes to linear and nonlinear finite element structural analysis codes. TRANCITS currently supports the output of SINDA and MARC heat transfer codes directly. It will also format the thermal data output directly so that it is compatible with the input requirements of the NASTRAN and MARC structural analysis codes. Other thermal and structural codes can be interfaced using the transfer module with the neutral heat transfer input file and the neutral temperature output file. The transfer module can handle different elemental mesh densities for the heat transfer analysis and the structural analysis
Chrysler improved numerical differencing analyzer for third generation computers CINDA-3G
New and versatile method has been developed to supplement or replace use of original CINDA thermal analyzer program in order to take advantage of improved systems software and machine speeds of third generation computers. CINDA-3G program options offer variety of methods for solution of thermal analog models presented in network format
Life assessment of combustor liner using unified constitutive models
Hot section components of gas turbine engines are subject to severe thermomechanical loads during each mission cycle. Inelastic deformation can be induced in localized regions leading to eventual fatigue cracking. Assessment of durability requires reasonably accurate calculation of the structural response at the critical location for crack initiation. In recent years nonlinear finite element computer codes have become available for calculating inelastic structural response under cyclic loading. NASA-Lewis sponsored the development of unified constitutive material models and their implementation in nonlinear finite element computer codes for the structural analysis of hot section components. These unified models were evaluated with regard to their effect on the life prediction of a hot section component. The component considered was a gas turbine engine combustor liner. A typical engine mission cycle was used for the thermal and structural analyses. The analyses were performed on a CRAY computer using the MARC finite element code. The results were compared with laboratory test results, in terms of crack initiation lives
Marangoni bubble motion in zero gravity
It was shown experimentally that the Marangoni phenomenon is a primary mechanism for the movement of a gas bubble in a nonisothermal liquid in a low gravity environment. A mathematical model consisting of the Navier-Stokes and thermal energy equations, together with the appropriate boundary conditions for both media, is presented. Parameter perturbation theory is used to solve this boundary value problem; the expansion parameter is the Marangoni number. The zeroth, first, and second order approximations for the velocity, temperature and pressure distributions in the liquid and in the bubble, and the deformation and terminal velocity of the bubble are determined. Experimental zero gravity data for a nitrogen bubble in ethylene glycol, ethanol, and silicone oil subjected to a linear temperature gradient were obtained using the NASA Lewis zero gravity drop tower. Comparison of the zeroth order analytical results for the bubble terminal velocity showed good agreement with the experimental measurements. The first and second order solutions for the bubble deformation and bubble terminal velocity are valid for liquids having Prandtl numbers on the order of one, but there is a lack of appropriate data to test the theory fully
THE ROLE OF ORGANIZED EXCHANGES AND STANDARDIZED CONTRACTS IN MARKETING NEW COMMODITIES
Agribusiness,
A computer program for predicting nonlinear uniaxial material responses using viscoplastic models
A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed
Study of extraterrestrial disposal of radioactive wastes. Part 1: Space transportation and destination considerations for extraterrestrial disposal of radioactive wastes
A feasibility study of extraterrestrial disposal of radioactive waste is reported. This report covers the initial work done on only one part of the NASA study, that evaluates and compares possible space destinations and space transportation systems. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles by about a factor of 2. The space shuttle requires a third stage to perform the waste disposal missions. Depending on the particular mission, this third stage could be either a reusable space tug or an expendable stage such as a Centaur
Context-Dependent Memory under Stressful Conditions: The Case of Skydiving
Two experiments examined the effect of differing levels of emotional arousal on learning and memory for words in matching and mismatching contexts. In Experiment 1, experienced skydivers learned words either in the air or on the ground and recalled them in the same context or in the other context. Experiment 2 replicated the stimuli and design of the first experiment except that participants were shown a skydiving video in lieu of skydiving. Recall was poor in air-learning conditions with actual skydiving, but when lists were learned on land, recall was higher in the matching context than in the mismatching context. In the skydiving video experiment, recall was higher in matching learn-recall contexts regardless of the situation in which learning occurred. We propose that under extremely emotionally arousing circumstances, environmental and/or mood cues are unlikely to become encoded or linked to newly acquired information and thus cannot serve as cues to retrieval. Results can be applied to understanding variations in context-dependent memory in occupations (e.g., police, military special operations, and Special Weapons and Tactics teams) in which the worker experiences considerable emotional stress while learning or recalling new information
- …