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SUMMARY

A computer program was developed for predicting nonlinear uniaxial material
responses using viscoplastic constitutive models. Four specific models, 1.e.,
those due to Miller, Walker, Krieg-Swearengen-Rohde, and Robinson, are included
in the present program. Any other unified model can be easily implemented into
the program in the form of subroutines. Analysis features include stress-
strain cycling, creep response, stress relaxation, thermomechanical fatique
loop, or any combination of these responses. In this report, an outiine is
given on the theoretical background of uniaxial constitutive models, analysis
procedure, and numerical integration methods for solving the nonlinear con-
stitutive equations. In addition, a discussion on the computer program
impiementation is also given. Finally, seven numerical examples are included
to demonstrate the versatility of the computer program developed.

INTRODUCTION

The ability to perform accurate structural analysis and design studies, and
ultimately durability assessments of gas turbine engine hot section components
depends, to a large extent, on having good material characterization models.
The material characterization for aerospace applications is made difficult
because of the complex thermomechanical load history, including elevated tem-
peratures, through which the components are cycled. The observed material
deformation phenomena that result from the complex loads and that must be
predicted accurately and efficiently with these models include the interaction
of creep and plasticity, cyclic stress-strain hardening (or softening), rate
dependence, stress relaxation, and creep recovery upon unloading. Generally,
these phenomena are modelled with macroscopic (continuum) constitutive
theories, which include classical plasticity theories, unified theories,
decoupled theories and rheological theories. - Some of these theories have been
used with varying degrees of success, where each theory has its unique desir-
able features and modeling capabilities.

Recently, there has been considerable research effort on the development of
unified theories (viscoplastic constitutive models) to predict the inelastic
behavior of metals. Because the viscoplastic models can represent the inter-
action of creep and plasticity (an important materiai deformation phenomenon
in engines) they have been applied to the characterization of hot section com-
ponent materials (refs. 1 and 2). Classical theory of plasticity, on the other
hand, cannot model this phenomenon, as discussed in reference 3. 1In classical
theories the inelastic deformation is partitioned into independent plastic and
creep terms, whereas in viscoplasticity theory it is combined into a single



inelastic strain term. Also, the other material deformation phenomena, such as
cyclic hardening or softening, rate dependence and creep, can be better repre-
sented with the viscoplastic models than with the classical and other models.
Consequently, a number of viscoplastic models have been proposed for more
realistic representation of material deformation of turbine engine hot section
components.

Viscoplastic models, 1ike classical models and others, are not, however,
without their shortcomings. Some of the shortcomings are: (a) the models
have not been fully developed or adequately tested; (b) the determination of
material parameters in these models 1s difficult since 1t is based largely on
trial-and-error fitting of experimental data; (c) there is only a 1imited
experimental data base available for materials used in hot section components;
and (d) the associated constitutive differential equations have stiff regimes
that present numerical difficulties in time-dependent analyses. To take full
advantage of these models, the aforementioned deficiencies must be overcome.
It is also noted that the differential equations of the viscoplastic models
are highly nonlinear. Thus analytical solution of these equations, except in
a few special cases, 1s impossible and numerical solutions are required.

In this report, a computerized analysis procedure to predict the nonlinear
uniaxial stress-strain response of materials subjected to a variety of thermo-
mechanical loads (simple to compliex) using several viscoplastic models was
developed. This procedure was incorporated into a computer program, called
VPMODEL, with the following purposes in mind:

1. To compare the responses predicted by a theory with experimental data.

2. To help understand the physical phenomena represented in a particular
viscoplastic model.

3. To perform parametric studies.

4. To conduct comparative studies of several viscoplastic models.

5. To investigate different numerical integration schemes.

The computer program is a modular structured code such that any viscoplastic
model or numerical integration scheme can be added or deleted from the program
without upsetting its overall coding organization. In addition, all computa-
tions for uniaxial responses under monotonic, cyclic, creep or stress relax-
ation loads, or any combination of these loads, are performed in an interactive
mode with free-format input. A computer menu guides the analyst through

the program, even to graphics plotting options for quick analysis of the data.

Included in this report is a section on the background of four visco-
plastic models. Each model is briefly reviewed and the differential equations
are presented in their uniaxial form. Also, included in other sections are
discussions of the analysis procedure and various numerical integration schemes
for soiving the uniaxial stiff differential equations, computer implementation

of these equations, and numerical examples to demonstrate the utilization of
the computer program VPMODEL.

BACKGROUND

Numerous viscoplastic models have appeared in the 1iterature. Although
they differ in details, most of the models share several common features. For
example, the inelastic strain rate is assumed to be a function of stress,
loading history, and loading rate. Such dependence is introduced through the
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use of two state variables, namely the equilibrium stress o« and drag stress
k. Moreover, the total strain rate is assumed to be the summation of the
elastic and inelastic strain rate terms. With these assumptions, a skeletal
form of viscoplastic models can be written as follows:

o] g - a
f<—_i_—) (1)
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where
e1 = inelastic strain
o = applied stress
e = equilibrium stress
k = drag stress
(¢) = time derivative

ha» bk and vy,, vk are the work-hardening and recovery functions
respective]y, they are generally functions of applied stress, temperature and
state variables. Equation (1) s the inelastic strain rate or flow law and
equations (2) and (3) are called evolutionary equations for the state vari-
ables. 1In addition to the above relations, we invoke the assumption that the
stress rate is proportional to the elastic strain rate by

S-€ (-l gh | (4)

where E 1is the Young's modulus of the material; ¢ 1is the total strain; B 1is
the thermal expansion coefficient; and T 1is the temperature.

By assigning appropriate terms in the evolutionary equations, several
important deformation phenomena of metals can be simulated by the viscoplastic
models. For example, by allowing the equilibrium stress « and drag stress k
to vary with an increase in cumulative inelastic strain in equations (2) and
(3), cyclic hardening (or softening) of hysteresis loops of the material can be
modelled. The transient creep or stress relaxation phenomena are represented
by the rapid growth of the state variables during the initial stage of loading.
Such growth becomes saturated as the recovery terms in equations (2) and (3),
the second terms, become dominant. That is, steady state creep is reached when
the strain work-hardening (or softening) process is in dynamic equilibrium with
the thermal recovery process. Other metallurgical phenomena, such as the
effects of annealing and warm-working, can be included by introducing appro-
priate terms in the evolutionary equations. In addition, temperature depend-
ence of the material can also be included by allowing +h° inelastic strain and
state variables to change with temperature. One unique feature of the visco-
plastic theory, differing from the classical plasticity theory, is that it does
not involve the concept of a yield surface explicitly.

By proposing various mathematical expressions for the inelastic strain and
state variables, a number of viscoplastic models have emerged in the 1itera-
ture. The more notable models are those due to Hart (ref. 4), Miller (ref. 5),
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Walker (ref. 6), Krieg, Swearengen and Rohde (ref. 7), and Robinson (ref. 8).
Since the Hart model can be considered as a special case of Walker's, 1t will

not be discussed herein. In this section, only the latter four models are

briefly outlined in their uniaxial differential forms.

Miller's Model

The inelastic strain rate for Miller's model was assumed to be a hyperboiic
sine function of the applied,stress and two state variables. The rate equa-
tions for inelastic strain and the two state variables for Miller's improved

model (ref. 9) are!

I ge {s\nh [K?ig—i—g) ]'5]} " sgn (o/E - a)

. = H]EI - HyBe' [sinh (A la])]1" sgn (a)
° AZ 1 5 'I
K = H2 c2 + |la] - K; « k 7| le”] Min(1.0, 6"“/0")
1.5,,n
- Hzczﬂe" [s1nh(A2x )]

where

H, = H! exp [- H asgn(EI)]

1 3
* T
o' = exp {(-Q /RTt) e In( t/T) + 11} ifT< Tt
*
o' = exp(-Q /RT) ifT> Tt
ell -

Q
= X" exp {- 2 [In(T/T) + 1]} T T,
t

8" = X" exp {- Q /RT} 1fFT>T1

recov t

with X" = exp(RpX')

(5)

(6)

(7)

(8)

(9)

(10)

()

(12)

(13)

ISome of the terms in Miller's latest mode]l which simulate metallurgical

behavior have not been included herein.with
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In the above equations B, E, n, Hy, Hp, H3, Ay, A2, Cp, Q*, Rp, Ry are mate-
rial constants, which, except for E, are temperature independent; T¢ 1is the
transition temperature of metal. Temperature dependence of the model is
introduced through the use of factors o' and o" (activation energies). The
model considers both kinematic and isotropic hardening of the material due to
the growth laws for « and k. In the original Miller's model (ref. 5), the
equilibrium stress was assumed to harden linearly with inelastic strain. This
circumscribes a tri-l1inear curve in modeling cyclic stress-strain response.

The model was subsequently modified (ref. 9) to accommodate nonlinear hardening
effects by allowing the constant H1 to vary with « according to equation (8).

Walker's Model

This model was derived from a three 3-element mechanical model for visco-
plastic materials (ref. 6). In its mathematical form, the inelastic strain is
expressed by a power law in terms of the applied stress and two state vari-
ables. The equations for the inelastic strain rate and the rate dependent
state variables are

n
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k = ky -k

In the above equations there are nine material constants, namely m, n, nq,
ny, n3, N4, ng, ng, N7, ag, K3 and kp. For nonisothermal conditions, all
material constants may vary with temperature. Since the model contains two
state variables, 1.e., equilibrium stress and drag stress, both the kinematic
and isotropic hardening effects can be simulated. The growth law for equilib-
rium stress (eq. (18)), includes both dynamic and static thermal recovery
terms; whereas only the static recovery was considered for the growth of drag
stress, (eq. (19)). MWalker's model was formulated in both differential and
integral forms (ref. 1). Only the differential form is considered in this
report.

Krieg, Swearengen and Rohde's (KSR) Model
The KSR model (ref. 7) 1s similar to Walker's model, since it also uses a
power law to represent the inelastic strain rate. The inelastic strain rate
equation is
n
el le=slsgn(o - o) (20)
k

while the state variable rate equations are
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The seven material constants in these equations are n, Ay, Az, A3, As,

A5, and kg, which can be temperature dependent. Both the equilibrium

stress and drag stress are included in the formulation (1.e., eq. (20)). The
growth laws contain two terms, the linear hardening and static recovery terms.
These terms produce tri-l1inear cyclic stress-strain curves or hysteresis loops.
This behavior may be modified by assuming the constant A3 1in equation (21)

to be very small. Furthermore, cyclic hardening couid be modelled by letting
the constants A, and Ag have small values in equation (22) so that the
drag stress grows slowly with deformation.

Robinson's Mode]

This model (ref. 8), to some extent, is also analogous to the previous
ones. That is, the inelastic strain rate is assumed to be a power function of
the effective stress and two state variables. The equations for the inelastic
strain rate and the rate dependent state variables are
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The eight material constants in these equations are A,

P sgn(o - a)

IA

IA

(23)

(24)

(25)

(26)

(27)

(28)

n, k, B, m, H, o

and R; Wy and Wy are smoothing constants to account for discontinuities in

the material characterization and their values are selected by the analyst.

For nonisothermal conditions, temperature dependence of the model is allowed

by varying the constants A and R with temperature.

In the above equations,
the drag stress was assumed to be constant. Thus, the current version of

Robinson's model only considers the kinematic hardening of materials for which
its isotropic hardening has already become saturated.

is desired, it can be easily introduced with a growth law for k in the form

similar to equation (22) (KSR's model).

ANALYSIS PROCEDURE

If isotropic hardening

With the uniaxial viscoplastic models outlined in the previous section,
it 1s possibie to anailyze three basic types of material response.

of response are

(1) Monotonic or cyclic stress-strain response
(2) Creep response
(3) Stress relaxation

The types




Also, any combination of the above responses can be obtained by specifying
appropriate loading histories. The analysis may be performed for either
isothermal or nonisothermal conditions. Caution should be given, however, to
nonisothermal analysis, since the constitutive model must be properly defined
for such a condition. Each of the basic response types are briefly described
below.

Monotonic or Cyclic Stress-Strain Response

For viscoplastic materials, time dependency is an important consideration
in the calculation of material response. As an example, for the purpose of
describing the analysis procedure, consider for a given strain rate the cyclic
stress-strain response of a material. 1In this case it is divided into several
segments for the purpose of proceeding with the analysis: (a) loading; (b)
unloading (or reverse loading); (c) loading again, etc. For each loading (or
unloading) segment, the analyst must supply the following information to begin
the analysis:

Temperature T

Strain rate ¢
Time increment At
Strain Timit €L

Using the strain 1imit, a stress 1imit o may be supplied to terminate the
analysis of a load segment. Based on this information, the following steps
are used in the analysis procedure to calculate the stress and strain at any

Step 1. Calculate the increments of total strain and inelastic
strain (assuming isothermal condition for discussion
purposes) according to

Ae = ¢ » At
(29)

act = ol at

where EI is computed from equation (1). The specific expression of EI is
obtained from whichever viscoplastic model is selected.

Step 2. Calculate the stress rate and stress increment from

o= E(e - b (30)
Ao = o « At




Step 3. Update the total stress, total strain and the state
variables involved.

o(tnﬂ) = o(tn) + Ao
c(tn+]) = e(tn) + Ae
(31)
a.(tn+.|) = a(tn) + Aa
k(tn+]) = k(tn) + Ak

The above calculation steps are repeated until the total strain or stress
reaches the specified limit.

Creep Response

Creep response is generally defined as the time-dependent deformation of
a material under constant stress. In the laboratory, for example, a uniaxial
stress is applied to a specimen in a two-step loading history to simulate
creep. That is, the stress i1s increased at a constant rate to a prescribed
value in a short time interval, say [0, ty], then held constant afterwards
as shown in figure 1(a), where t7 << tp. In addition to two-step load-
ing, creep tests may also be conducted under muitiple-step loading as shown in
figure 1(b) or under constant stress at any point on the loading/unloading
branch of hysteresis loops (fig. 1(c¢)). To consider these different cases, a
creep analysis can be conveniently performed by dividing its loading history
into two or more segments. For example, the two-step loading shown in figure
1(a) 1s divided into: segment 1 - stress is increased form zero to a constant
value, and segment 2 - stress is held constant. The required data the analyst
must supply for each of the two load segments are

Segment 1
(a) Temperature T
(b) Strain Rate c

(c) Time step size at
(d) Strain Timit ¢ or stress limit o

Segment 2
(a) Temperature T
(b) Time step size At
(c) Hold time ty

Division of the loading history for multistep or cyclic loadings can be made
by repeating this procedure.



Stress Relaxation

In contrast to creep, stress relaxation is obtained by applying a con-
stant strain to a specimen and holding this strain for an extended time
period. In this case, the analyst must specify: temperature, strain rate,
time increment, strain 1imit and hold time. The analysis procedure involved
herein for two-step or multistep loadings is almost identical to that of creep
analysis.

NUMERICAL INTEGRATION

In order to calculate the uniaxial response (either stress or strain) of
a material using a viscoplastic theory, a system of highly nonlinear differen-
tial equations, such as those of equations (1) to (4) must be solved, by
numerical integration. It is well known that these equations have "stiff"
regimes and special attention is, therefore, required to solve them numeri-
cally. For example, the inelastic strain rate in equation (1) is a strong
nonlinear function of the stress and the state variables « and k. That is
to say, any small variation in o, « and k can cause significant changes in

the value of EI. Similar behavior is also found in the growth laws (i.e.,

eqs. (2) and (3)). Therefore, a very small time step is often required to
integrate these equations by numerical methods.

In this section, various methods for solving the nonlinear differential
equations of viscoplastic models are discussed. The question of convergence
control and possible ways of selecting the size of the time step are also con-
sidered. For the purpose of discussion, equations (1) to (3) are replaced by
the following matrix expression

y = £yt (32)

This expression represents a system of nonlinear ordinary differential equa-
tions. Although various numerical schemes can be used to solve these equa-
tions (e.g., refs. 10 and 11), practical considerations must be given to three
important issues: (a) their suitability for large scale stress analysis; (b)
their solution accuracy; and (c) computer solution time. For instance, Gear's
multistep method (ref. 12) was utilized effectively by Miller (ref. 13) for
obtaining uniaxial viscoplastic response of Zircaloy, but the method is not
suitable for incorporation into a finite element analysis due to the coupling
of global degrees of freedom for multiple time steps. Moreover, the method
requires an independent procedure to start-up an analysis (ref. 14).

In view of the above discussion, three simple numerical schemes were
selected for the present analysis, namely the forward Euler (explicit),
explicit trapezoidal and implicit trapezoidal integration schemes.

In the forward Euler integration scheme, the value of y at time tp4
in equation (32) is approximated by
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Iney = Xy + O - £ (33)

where Yne = X(to.0)
Yo = X(t)
£ - ﬁWn,tn)

If the above equation is employed in an analysis of the "stiff" differential
equations, very small time steps must be enforced to avoid any numerical
instability.

Instead of using equation (33), the value of y at time tp,; may be
approximated by an implicit trapezoidal rule

(£, *

at
2 '~n £n+1) (34)

ne1 = Xp *

where fpiq = f (yps1). With the application of the Newton-Raphson method,
equation (34) is rewritten for the i-th iteration

(f - ot - g1 ay™ o r o D) g gy (35)

where I = Identity matrix

J = 35 (A nonsymmetric Jacobian matric)

a'M -y (36)

F = ln + At-ﬁn/Z (37)

(Eq. (35) 1s also called an implicit trapezoidal scheme with iterations.) If
this method is employed in an analysis, the immediate question is - how can it
be determined whether the solution has converged or not? Several convergence
criteria could be used for this purpose. One convenient way is to check the
iterative value of Ay such that

(1)
e= "N o To1. (38)

Ny o

where % = Euclidean norm

Tol = Tolerance ratio
Presently, the above criterion is implemented into the computer program VPMODEL

to determine the convergence of a solution. The implicitness of fg,7 1in
equation (34) may be removed by approximating

n



f =f +J Ay (39)

~n+l ~ ~n  ~n
af
J = (}-) (40)
n ay/ .
t-tn
Thus, equation (34) becomes
At _ .

[L'z %n] fy =t - £, (41)

The above equation is called the explicit trapezoidal scheme. These three
schemes have been impliemented into VPMODEL for the study of numerical efficiency.

Another concern is the selection of the time step. It 1s possible to

estimate a time increment if the strain rate is expressed by a power law
(Norton's law) of the form

¢ =A a: (42)

where A and n are material constants and

O = (o - a)/k (43)

When the Euler forward method is employed, a step size for obtaining a stable
solution is given by (ref. 15)

[+

atg < = (44)
nte
where
At = Largest time step that can be used for obtaining a stable
solution
and
E = Young's modulus

Obviously, the above estimate is valid only if the elastic strain rate is much
smaller than the inelastic rate. If the constitutive equation for inelastic
strain rate is considerably different from the Norton's power law, then an
approximate relationship in the form of equation (42) can be established.

e = Ag" (45)
with 1 d lns
n=d in (46)
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In view of the above discussion and computer experimentation runs using
VPMODEL, the following step size is suggested for high strain-rate
(~10-2 - 10-5/sec) monotonic or cyclic loading:

Euler forward integration scheme At = Atg
Trapezoidal integration with or without iterations at = 5atg

For steady-state creep or stress relaxation a much larger step size may be
employed.

For different types of loading, an automatic time step control is useful,
first to speed-up computation time and second to reduce data storage require-
ments. This is done according to the following criteria:

Let

at a trial step size
e calculated error
emax Maximum error limit
emin Mminimum error 1imit
at step size used for analysis

then

(a) e > emax, t = at/2

(At is further halved until e < epay)
(b) emin < e < emax, At = At
(c) e < emin, at = 2at

(This process is repeated until,epipn < € < epax-)-

The definition of the error e varies depending on which integration scheme is
to be used. The error is measured by

e ~ Vfp for the Euler scheme
and
e ~ v2f, for the trapezoidal scheme
where vfp = fn - fad ‘ (47)
v2fn = fo - 2fa1 + fnoo (48)

These equations hold for the backward difference approximation. In view of
the above relationships, the measures for error are chosen to be
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_ ug’fall -at for the Euler scheme

Tnyn ol (49)
nvzfnu At for the trapezoidal scheme
= Wyn (50)

On the other hand, if the implicit trapezoidal scheme is employed, it 1s
more convenient to adopt the relationship given in equation (38) for the
calculation of error.

COMPUTER IMPLEMENTATION

The analysis procedure described has been programmed and the four visco-
plastic models discussed have been incorporated into a computer program called
VPMODEL to calculate the uniaxial responses of materials. The uniaxial
responses include cyclic stress-strain history, creep, stress relaxation, and
any combination of these phenomena. It is important to recall that the pur-
poses of writing this program are intended for: (a) correlating the responses
predicted by a theory with experimentally measured data; (b) performing para-
metric studies of material constants for a particular viscoplastic model, (c)
performing comparative studies of various viscoplastic models; and (d) investi-
gating different numerical integration schemes in terms of their computational
efficiency.

With the above purposes in mind, the following features are included 1in
the program:

(1.) The viscoplastic models and integration schemes were coded (in
Fortran) in separate modules so that they can be easily modified, added to or
deleted from the program.

(2.) A1l computations are in an interactive mode, and the input data are
specified in conversational form and free-field format.

(3.) Analysis results can be plotted graphically and/or printed
numerically.

At present, material constants of two high temperature alloys for the specific
models 1isted below are included in the program:

Hastelloy X - material - Miller's, Walker's and KSR's models
2-1/4 Cr-1 Mo Steel - Robinson's model

Other material types or material/model combinations, if known, may be added to
the program quite easily by the user.

The program begins with four primary decisions to be made by the user,
namely

(1) Material model selection
(2) Material type

14




(3) Integration scheme to be used
(4) Analysis type

A menu for each of the above four items is listed in figure 2. After the
user has made the selections, VPMODEL will proceed with the corresponding
analysis in accordance with the analysis procedure outlined in section 3. At
the end of each load segment, the user has several options to either continue
the analysis, plot the results, or terminate the execution. A flow chart for
the analysis of VPMODEL is shown in figure 2. :

The graphics part of the program was written by using a Calcomp plotting
package with the plotting device being either the Calcomp plotter or the
Tektronix graphics terminal, or their equivalent. The free-field input format
was coded externally so that the program does not rely on the availability of
such software on a particular compiler.

EXAMPLES

To demonstrate the utility of the program VPMODEL, seven example problems
are included in this section. Two alloys are considered, namely Hastelloy-X
and 2-1/4 Cr-1 Mo ferretic steel. Hastelloy-X s used for jet engine combustor
liners whereas the ferretic steel is a typical steam generator material for ad-
vanced nuclear reactors. The material constants of Hastelloy-X for the Miller,
KSR and Walker models are given in references 1 and 2. Material constants for
the ferretic steel with Robinson's model are reported in reference 8.

Cyclic Stress-Strain Response Using Walker's Model
The cyclic response of Hastelloy-X, represented by Walker's model, is
considered first. 1In this case, the following analysis parameters were
specified:

Temperature T

1600° F (871° C)
3.87 x 10-3/sec
0.006

Strain rate €

Strain limit ¢

Step size At 0.04 sec

Integration method Explicit trapezoidal scheme

At first, one full cycle of load, consisting of three loading segments, was
imposed as shown below

Segment 1 - Loading 0 <e<e
Segment 2 - Unloading e > ¢ > - ¢
Segment 3 - Loading -e| < € < g

Corresponding to the above three loading segments, the following response
curves were plotted:

(a) Stress versus Strain (fig. 3)
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(b) Back stress versus Inelastic Strain (fig. 4)
(c) Back stress versus Total Strain (fig. 5)

To obtain the cyclic stress-strain response of the material, another unloading
segment (segment 4; -¢ < ¢ < ¢ ) was added to the previous three segments

and the response was plotted for the last two loading segments as shown in
figure 6. The purpose of applying two extra loading segments is to ensure
that Hastelloy-X has reached its saturated state due to cyclic hardening.
Similar responses were obtained for different strain rates at the same
constant temperature, 1.e.,

1x10-9 and 1.25x10-

Strain rates of = 3.66x10‘4, 3.70x10'5, 1.1
= 0.4 sec, 4 sec., 12 sec, 80

1/sec and corresponding step sizes of t
sec.

The above results are also shown in figure 6. These curves are almost tiden-
tical to those in figure 59 of reference 1.
Stress Relaxation Test Using Walker's Model
A stress relaxation case can be obtained by imposing a constant strain
history to the material concerned. The relaxation phenomenon of Hastelloy-X

based on Walker's model is il1lustrated with the following loading condition:

Constant temperature T

1600° F (871° C)

Strain rate e = 3.87 x 10-3/sec
Strain 1imit e = 0.006

Hold time ty = 50 sec.

Initial step size At = 0.40 sec.

Initially, the material was subjected to one full cycle of strains, -¢ < ¢
< g (see fig. 7). Then i1t experienced stress relaxation under constant
strain (¢ = ¢) with a hold time ty = 50 sec at the maximum stress point
as shown in figure 7. The total load history was applied in four segments:

Segment 1 - Loading 0<e<e
Segment 2 - Unloading EL > € 2 -¢|
Segment 3 - Reloading -ef <€ £ e
Segment 4 - Constant Strain e = ¢

The integration scheme used was the implicit trapezoid rule with variable step
size for all the four load segments. The calculated stress history (or relax-
ation curve) 1s shown in figure 8, where the stress history corresponding to
the first strain cycle is omitted. At the beginning of hold time, the stress
value is about 37 ksi (255.3 MPa) and it reduces to 12.5 ksi (86.3 MPa) asymp-
totically after undergoing 50 seconds of relaxation.
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Cyclic Stress-Strain Response Using Robinson's Model

The third example is to obtain cyclic stress-strain response of 2-1/4
Cr-1 Mo steel using Robinson's model. The material is subjected to uniaxial
stress with the following conditions:

Constant temperature T 1000° F (538° C)

Strain rate e = 2.4 x 10~2/hr
Strain 1imit e = 0.0032
Step size at = 2 x 10-5 hr

Integration scheme Explicit trapezoidal method

Initially, the uniaxial loading was applied in 3 segments: (a) loading;
(b) unloading; and (c) reloading, similar to example 1. Corresponding to the
above loading and unloading segments, two response curves were plotted.

(a) Stress versus Strain (fig. 9)
(b) Back Stress versus Inelastic Strain (fig. 10)

It is seen in figure 9 that corresponding to the same strain 1imit, the stress
for the reloading segment is higher than the stress of the initial segment
(virgin material). This phenomenon is associated with strain hardening effect
portrayed by the model. The hardening effect becomes saturated after the
material has undergone one full cycle of loading. Therefore, in order to
obtain a stable cyclic stress-strain response, another unloading segment was
added and the corresponding stress-strain plot is shown in figure 11. 1In
addition to the strain rate of 2.4x10-2/hr, two different strain rates were
analyzed, i.e., = 0.24x10-2 and 0.024x10'2/hr, and the results are plotted

in figure 11.

Creep Response Using Robinson's Model

To demonstrate how to obtain the creep response by using VPMODEL, we
consider Robinson's model as an example. The test condition is specified as
follows:

Constant temperature T

1000° F (538° C)
0.6x10-3/hr

Strain rate

Stress 1imits oL = 8,10, 11, 12.5, 15 kst
(ksi = 6.9 MPa)
Hold times ty = 2000, 2000, 2000, 870, 200 hr

Before the creep loading, a full cycle of stress, o = * o, was applied to
the material so that its strain hardening became saturated. Then the stress
was held constant at the maximum tensile stress point, i1.e., o = o, for the
designated hold time. In the analysis, the implicit trapezoidal scheme with
variable step sizes was employed. The initial step size for all stress values
was: At =1 hr, then the program computed required step size according to
internally specified convergence tolerance. The calculated creep responses
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(inelastic strain versus time) corresponding to the hold times are shown 1in
figure 12. Again, the creep curves obtained from VPMODEL are identical to
those generated by Robinson (ref. 8).

Comparison of Three Viscoplastic Models

In this example, the stress-strain response of Hastelloy-X material is
predicted by the three different models (Walker, KSR and Miller) for the same
temperature, strain rate and loading condition. For this purpose, we have
considered five cases by varying the temperature and strain rate as defined in
table 1. Only monotonic loading (one load segment) was imposed for each case
and the stress-strain plots for all five cases are shown in figures 13 to 17.
Ideally, for the same material under the same loading condition, the predicted
responses from the different viscoplastic models should be the same. This is
not the case according to the results shown in figures 13 to 17. If we use
Walker's model as a basis for comparison, KSR modg] correlated with Walker's

prediction quite well for T = 1400° F (760° C), ¢ = 3.87x10-3/sec, whereas

Miller's model under-estimates the stress after the inelastic strain is initi-
ated as shown in figure 13. On the other hand, as shown in figures 14 and 15,
for the same temperature but at intermediate or lower strain rates, Miller's
model correlates more closely with Walker's model than KRS model. Similar
qualitative results are shown in figures 16 and 17 for a higher temperature,

T = 1800° F (982° C).

Numerical Stability Using Walker's Model

To 11lustrate the numerical instability problem, a monotonic load case is
considered. The stress-strain response based on Walker's model was calculated
for three different step sizes using the forward Euler integration scheme,
with t = 0.08, 0.32 and 0.40 sec. The results are shown in figure 18. It is
obvious that significant numerical oscillation is seen for t = 0.40 sec and
the oscillation diminishes as the step size is reduced. To make a further
qualitative comparison of the three integration methods in VPMODEL, we
consider again the same stress-strain response of Hastelloy-X using Walker's
model. The problem was run by using the Euler forward, explicit and implicit
trapezoidal methods (no interactions). According to the results shown in
figure 19, the trapezoidal methods are far more accurate than the Euler method.

Thermomechanical Fatiqgue Loops

Thermomechanical fatigue loops (TMF) are defined in this study to be
typical (or simulated) loading histories of turbine engine combustor liners.
Under these realistic loading conditions, both mechanical load (in the form of
imposed strain) and temperature are subjected to large changes as functions of
time. Having accurate predictions of the stress/strain response for these
Toading conditions is essential in the structural integrity and durability
assessments of combustor 1iners, particularly at the critical locations in a
combustor 1iner (usually where fatigue occurs). To this end, research programs
have been conducted to develop time-temperature dependent constitutive
relationships and improve finite element structural analysis procedures
(refs. 1 and 2).
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Rather than using sophisticated finite element structural analysis
programs for evaluation and comparison of the viscoplastic models for dif-
ferent TMF loop, the uniaxial stress/strain responses of Hastelloy-x can be
determined from the viscoplastic models in VPMODEL. Considered herein for
11lustrative purposes are three TMF Toops: Case 1 - Closed symmetric loop,
Case 2 - Open symmetric loop, and Case 3 - Open nonsymmetric loop. With these
specified strain and temperature histories, stress responses were calculated in
VPMODEL with the Walker, KSR and Miller models. These examplies are considered
for two reasons: (1) to demonstrate the capability of VPMODEL in handling non-
isothermal loadings; and (2) to compare the predicted uniaxial responses with
the experimental data reported in reference 2.

For Case 1, the temperature varies sinusoidally with time from 800° to
1600° F (427° to 871° C) with a period of 1 min (see fig. 20). Plots of the
corresponding strain histories (also varying in a sinusoidal form) and the
strain-temperature relationship are shown in figures 21 and 22. Analysis
results obtained from the three models in VPMODEL, which are identical with
those from reference 2, are compared with experimental data in figures 23 to
25. It is noted that the experimental data stabilized after 2 cycies.

Figure 23 shows that prediction made by Walker's model requires several cycles
of loading-unloading before the response stabilizes, and the model considerably
over-predicts the stress response. The prediction made by Miller's model,
shown in figure 24, tends to reach the steady-state in the third cycle;
however, the stress-strain response becomes almost a straight Tine as it
approaches the steady-state condition. In other words, the hysteresis effect
is erased by the effect of temperature, which is contrary to the experimental
data. The prediction made by the KSR model, on the other hand, shows very

good agreement with the experimental measurements as seen in figure 25.

For the case of the open symmetric loop, Case 2, the temperature history
(fig. 26) is identical to that of Case 1: The strain history and strain-
temperature plots are given in figures 27 and 28. Comparisons between
predictions and experimental data are shown in figures 29 to 31. Both the
Miller and KSR models attain the steady-state condition during the second TMF
loop, while Walker's model stabilizes in the fourth cycle. Tensile yields at
two locations in the loading branch of the hysteresis loops, as indicated in
figures 29 and 31, were predicted by both the Walker and KSR models, while
Miller's model did not reflect such an effect (see fig. 30). For this loading
condition, the predictions by Walker's and Miller's models are reasonably close
to the experimental data, while the KSR model over-predicted stress reduction
for the reverse loading branch of the TMF loop.

The temperature and strain histories, and strain-temperature relationship
for Case 3 are shown in figures 32 to 34, respectively. In this case, the
temperature vartes sinusoidally from 950° (510° C) and 1750° F (954° C) for
1 min with a hold time of 40 sec at the peak temperature. The strain is held
constant at -0.43%for the hold-time period. Analysis results for the three
models and experimental data are compared in figures 35 to 37. It is seen
from these figures that in approaching the steady-state condition, the same
behavior is exhibited as the previous loading case. Since the constant strain
hold time corresponds to a constant temperature, theoretical predictions
should show some degree of stress relaxation. This is indeed the case as seen
in the stress-strain plots (figs. 35 to 37). However, the experimental data
do not show the distinct stress relaxation changes as do the predictions.
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Nevertheless, stress relaxation may have occurred gradually during the experi-
ment. Miller's model predicts a larger amount of stress relaxation than the
Walker and KSR models. Furthermore, Miller's model does not produce tensile
yield in the tensile portion of the cycle and simply exhibits elastic behavior
as shown in figure 36. Because of these two factors, the predictions due to
the Walker and KSR models are slightly better than those from Miller's model
for the third loading case.

CONCLUSIONS

A computer program called VPMODEL was developed to calculate the untaxtal
responses of material by using four viscoplastic models, namely Miller, Walker,
Krieg-Swearengen-Rohde, and Robinson models. The nonlinear uniaxial responses
which can be analyzed are cyclic stress-strain, creep, stress relaxation,
thermomechanical fatigue loop or any combination of these phenomena. 1In
addition, three integration schemes, 1.e., Euler forward difference, explicit
and implicit trapezoidal methods with Newton-Raphson iterations, were imple-
mented into the program for the study of numerical characteristics of the
various constitutive models. Since VPMODEL was written on a modular basis,
addition of any new viscoplastic model or modification of an existing model
can be made without major coding effort. For this reason, the program serves
as an efficient tool for development and refinement of viscoplastic models.

It can also be used for understanding the physical nature of a given consti-
tutive model as well as evaluating and comparing different viscoplastic models
and numerical integration schemes for use in structural analysis for aerospace
and other industry applications.
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APPENDIX A - USER'S INSTRUCTION

Summary of Analysis Features
The current version of VPMODEL consists of the following analysis features:

(a) Miller, Walker, KRS, and Robinson viscoplastic models.

(b) Uniaxial responses for monotonic or cyclic loading, creep stress
relaxation or any combination of these phenomena.

(c) Isothermal or nonisothermal (e.g., thermal-mechanical cycling)
condition.

(d) Integration schemes including forward Euler method, explicit
trapezoidal method, and implicit trapezoidal method with .
Newton-Raphson iteration.

(e) Conversational data input with free-field format.

(f) Interactive computations

(g) Plotting capability on graphics terminal.

Nomenclature

In the conversational questions for data input to VPMODEL, several
terminologies are referenced and they are described as follows:

Execution

f

Each time when the user loads the VPMODEL program into
computer to perform one or several analyses, it is called
an 'execution'. This is also equivalent to a terminal
session.

Case - During each execution (or terminal session), the user may
wish to perform one or several cases of analysis; for
example, Case 1: Cyclic stress-strain response using
Walker's model, Case 2: Cyclic stress-strain response
using Miller's model, etc.

Segment Each case may consist of one or more load segments.

Hold Time

The time period during which creep under constant stress or
stress relaxation under constant strain is being exercised.

The maximum time at which the analysis of a load segment
terminates.

Time Limit

Stress Limit- The maximum or minimum stress value (including the
algebraic sign) at which the analysis of a load segment
terminates.

Strain Limit- The maximum or strain value (including the algebraic sign)
at which the analysis of a load segment terminates.
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Limitations

VPMODEL has several limitations that the user must be aware of:

(a)

(b)

(c)

Material constants are available only for Hastelloy-X - Walker's
model, Miller's model and KSR's model and for 2-1/4 Cr-1 Mo - Steel
Robinson's model.

The maximum number of data points is 1imited to '4000' for the
variables: o, E, 8E, o, k, T, and t. This limitation can be
removed by changing the array sizes in COMMON/STAVAR/ in the computer
program.

Calcomp plotting routines or interface routines for IBM TSS/370
graphics system are required.

Instructions

Since the data input procedure for VPMODEL was written in a conversational
form, no additional input instructions are necessary in order for the user to
run the program. For each terminal session, the user needs only to provide the
analysis data in answering those questions prompted by the program and which
appear as a menu on the terminal screen. The following steps are followed 1in
order to run the program on Lewis' IBM 370-3033.

Step 1 Logon IBM 370-3033

Step 2 Load the program into the system by entering "vpmodel', a procdef

which compiles the program and prepares it for execution.

Step 3 Provide input data by answering the questions prompted and

execute the program for the case being analyzed.

Step 4 Provide input data for obtaining results (graphics, 1istings,

hard copy, etc.)

Step 5 Terminate the analysis (or execution) by entering '0O' (for stop)

from procedure menu.

Step 6 Logoff
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TABLE I. - DIFFERENT TEST CONDITIONS FOR
MODEL COMPARISON

Case Temperature Strain rate Strain 1imit,
percent
1 1400° F (760° C) | 3.87x10-31/sec 0.6
2 1400° F (760° C) | 3.66x10-%41/sec .6
3 1400° F (760° C) | 1.25x10-61/sec .6
4 1800° F (982° C) | 3.87x10-31/sec .6
5 1800° F (982° C) | 3.66x10-%1/sec .6
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