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A COMPUT PROGRAM FOR P R E D I C T I N G  NONLINEAR UNIAXIAL MATERIAL 

RESPONSES USING VISCOPLASTIC MODELS 

T. Y .  Chang and R. L. Thompson 

Na t iona l  Aeronautics and Space Admin i s t ra t i on  
Lewis Research Center 
Cleveland, Ohio 441 35 

SUMMARY 

A computer program was developed f o r  p r e d i c t i n g  non l i nea r  u n i a x i a l  m a t e r i a l  
responses us ing v i s c o p l a s t i c  c o n s t i t u t i v e  models. Four s p e c i f i c  models, i .e. ,  
those due t o  M i l l e r ,  Walker, Krieg-Swearengen-Rohde, and Robinson, a r e  inc luded 
i n  the  present  program. Any o the r  u n i f i e d  model can be e a s i l y  implemented i n t o  I 

0 
(u t h e  program i n  t h e  form o f  subroutines. Analys is  fea tu res  i n c l u d e  s t r e s s -  
cu s t r a i n  c y c l i n g ,  creep response, s t r e s s  r e l a x a t i o n ,  thermomechanical f a t i g u e  
w loop, o r  any combination o f  these responses. I n  t h i s  r e p o r t ,  an o u t l i n e  i s  

g iven on t h e  t h e o r e t i c a l  background o f  u n i a x i a l  c o n s t i t u t i v e  models, ana lys i s  
procedure, and numerical  i n t e g r a t i o n  methods f o r  s o l v i n g  t h e  non l i nea r  con- 
s t i t u t i v e  equat ions.  I n  a d d i t i o n ,  a d i scuss ion  on the  computer program 
implementat ion i s  a l s o  given. F i n a l l y ,  seven numerical  examples a r e  inc luded 
t o  demonstrate t h e  v e r s a t i l i t y  o f  the computer program developed. 

- 
I 

INTRODUCTION 

The a b i l i t y  t o  per form accurate s t r u c t u r a l  a n a l y s i s  and design s tud ies,  and 
u l t i m a t e l y  d u r a b i l i t y  assessments o f  gas t u r b i n e  engine h o t  sec t i on  components 
depends, t o  a l a r g e  ex ten t ,  on having good m a t e r i a l  c h a r a c t e r i z a t i o n  models. 
The m a t e r i a l  c h a r a c t e r i z a t i o n  f o r  aerospace a p p l i c a t i o n s  i s  made d i f f i c u l t  
because o f  t h e  complex thermomechanical load h i s t o r y ,  i n c l u d i n g  e levated tem- 
peratures,  through which the  components a r e  cyc led.  The observed m a t e r i a l  
deformat ion phenomena t h a t  r e s u l t  from t h e  complex loads and t h a t  must be 
p r e d i c t e d  accu ra te l y  and e f f i c i e n t l y  w i t h  these models i nc lude  t h e  i n t e r a c t i o n  
o f  creep and p l a s t i c i t y ,  c y c l i c  s t r e s s - s t r a i n  hardening ( o r  s o f t e n i n g ) ,  r a t e  
dependence, s t r e s s  r e l a x a t i o n ,  and creep recovery upon unloading. General ly,  
these phenomena a r e  modelled w i t h  macroscopic (continuum) c o n s t i t u t i v e  
theo r ies ,  which i n c l u d e  c l a s s i c a l  p l a s t i c i t y  t heo r ies ,  u n i f i e d  theo r ies ,  
decoupled theo r ies  and r h e o l o g i c a l  t heo r ies .  Some o f  these t h e o r i e s  have been 
used w i t h  va ry ing  degrees o f  success, where each theo ry  has i t s  unique d e s i r -  

I a b l e  features and modeling c a p a b i l i t i e s .  

Recently, t he re  has been considerable research e f f o r t  on t h e  development o f  
u n i f i e d  theo r ies  ( v i s c o p l a s t i c  c o n s t i t u t i v e  models) t o  p r e d i c t  t he  i n e l a s t i c  
behavior o f  metals.  
a c t i o n  o f  creep and p l a s t l c l t y  (an impor tant  m a t e r i a l  deformat ion phenomenon 
i n  engines) they have been app l i ed  t o  t h e  c h a r a c t e r i z a t i o n  o f  h o t  s e c t i o n  com- 
ponent m a t e r i a l s  ( r e f s .  1 and 2 ) .  C lass i ca l  theory o f  p l a s t i c i t y ,  on t h e  o the r  
hand, cannot model t h i s  phenomenon, as discussed i n  re ference 3 .  I n  c l a s s i c a l  
t h e o r i e s  t h e  i n e l a s t i c  deformat ion I s  p a r t i t i o n e d  i n t o  independent p l a s t i c  and 
creep t e r m s ,  whereas i n  v i s c o p l a s t i c l t y  theory i t  i s  combined i n t o  a s i n g l e  

Because the v i s c o p l a s t i c  models can represent  t h e  i n t e r -  
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i n e l a s t i c  s t r a i n  t e r m .  A l s o ,  t he  o the r  m a t e r i a l  deformat ion phenomena, such as 
c y c l i c  hardening o r  sof tening, r a t e  dependence and creep, can be b e t t e r  repre- 
sented w i t h  t h e  v i s c o p l a s t i c  models than w i t h  t h e  c l a s s i c a l  and o the r  models. 
Consequently, a number o f  v i s c o p l a s t i c  models have been proposed f o r  more 
r e a l i s t i c  rep resen ta t i on  o f  m a t e r i a l  deformat ion o f  t u r b i n e  engine h o t  s e c t i o n  
components. 

V i s c o p l a s t i c  models, l i k e  c l a s s i c a l  models and others,  a r e  no t ,  however, 
w i t h o u t  t h e i r  shortcomings. Some o f  t h e  shortcomings are:  (a)  t h e  models 
have n o t  been f u l l y  developed o r  adequately tested;  ( b )  t h e  de te rm ina t ion  of 
m a t e r i a l  parameters i n  these models i s  d i f f i c u l t  s i nce  i t  i s  based l a r g e l y  on 
t r i a l - a n d - e r r o r  f i t t i n g  o f  exper imental  data; ( c )  t h e r e  i s  on l y  a l i m i t e d  
exper imental  data base a v a i l a b l e  f o r  m a t e r i a l s  used i n  h o t  s e c t i o n  components; 
and ( d )  t h e  associated c o n s t i t u t i v e  d i f f e r e n t i a l  equat ions have s t i f f  regimes 
t h a t  present  numerical d i f f i c u l t i e s  i n  time-dependent analyses. To take f u l l  
advantage o f  these models, t h e  aforementioned d e f i c i e n c i e s  must be overcome. 
It i s  a l s o  noted t h a t  t h e  d i f f e r e n t i a l  equations o f  t h e  v i s c o p l a s t i c  models 
a r e  h i g h l y  non l i nea r .  
a few spec ia l  cases, i s  impossib le  and numerical s o l u t i o n s  a r e  requ i red .  

Thus a n a l y t i c a l  s o l u t i o n  o f  these equat ions,  except i n  

I n  t h i s  repo r t ,  a computerized a n a l y s i s  procedure t o  p r e d i c t  t h e  non l i nea r  
u n i a x i a l  s t r e s s - s t r a i n  response o f  m a t e r i a l s  subjected t o  a v a r i e t y  o f  thermo- 
mechanical loads (s imple t o  complex) us ing  several  v i s c o p l a s t i c  models was 
developed. This  procedure was inco rpo ra ted  i n t o  a computer program, c a l l e d  
VPMODEL, w i t h  the f o l l o w i n g  purposes i n  mind: 

1. 
2. 

3 .  To perform parametr ic  s tud ies .  
4. To conduct comparative s tud ies  o f  severa l  v i s c o p l a s t i c  models. 
5. To i n v e s t i g a t e  d i f f e r e n t  numerical  i n t e g r a t i o n  schemes. 

To compare t h e  responses p r e d i c t e d  by a theo ry  w i t h  exper imental  data.  
To h e l p  understand t h e  p h y s i c a l  phenomena represented I n  a p a r t i c u l a r  
v i s c o p l a s t i c  model. 

The computer program i s  a modular s t r u c t u r e d  code such t h a t  any v i s c o p l a s t i c  
model o r  numerical i n t e g r a t i o n  scheme can be added o r  de le ted  f rom t h e  program 
w i t h o u t  u p s e t t i n g  i t s  o v e r a l l  coding o rgan iza t i on .  I n  a d d i t i o n ,  a l l  computa- 
t i o n s  f o r  u n i a x i a l  responses under monotonic, c y c l i c ,  creep o r  s t r e s s  r e l a x -  
a t i o n  loads, o r  any combination o f  these loads, a r e  performed i n  an I n t e r a c t i v e  
mode w i t h  f ree-format i n p u t .  
t he  program, even t o  graphics p l o t t i n g  opt ions f o r  qu i ck  a n a l y s i s  o f  t he  data.  

A computer menu guides t h e  a n a l y s t  through 

Inc luded i n  t h i s  r e p o r t  i s  a s e c t i o n  on t h e  background o f  f o u r  v isco-  
p l a s t i c  models. Each model I s  b r i e f l y  reviewed and t h e  d i f f e r e n t i a l  equations 
a r e  presented i n  t h e i r  u n i a x i a l  form. Also, i nc luded  i n  o the r  sec t i ons  a r e  
d iscuss ions o f  the a n a l y s i s  procedure and va r ious  numerical  i n t e g r a t i o n  schemes 
f o r  s o l v i n g  the  u n i a x i a l  s t i f f  d i f f e r e n t i a l  equat ions,  computer implementat ion 
o f  these equations, and numerical  examples t o  demonstrate t h e  u t i l i z a t i o n  of 
t h e  computer program VPMODEL. 

BACKGROUND 

Numerous v i s c o p l a s t l c  models have appeared i n  t h e  l l t e r a t u r e .  Although 
they d i f f e r  i n  d e t a i l s ,  most O f  t he  models share seve ra l  common features.  For 
example, t h e  i n e l a s t i c  s t r a i n  r a t e  i s  assumed t o  be a f u n c t i o n  of s t r e s s ,  
l oad ing  h i s t o r y ,  and load ing  r a t e .  Such dependence i s  i n t roduced  through t h e  
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use o f  two s t a t e  va r iab les ,  namely the e q u i l i b r i u m  s t r e s s  a and drag s t ress  
k.  Moreover, t h e  t o t a l  s t r a i n  r a t e  I s  assumed t o  be t h e  summation o f  t h e  
e l a s t i c  and i n e l a s t i c  s t r a i n  r a t e  terms. With these assumptions, a s k e l e t a l  
form o f  v i s c o p l a s t i c  models can be w r i t t e n  as f o l l o w s :  

t - I  = f ( 7 )  

where 

t~ = i n e l a s t i c  s t r a i n  
u = a p p l i e d  s t ress  
a = e q u i l i b r i u m  s t ress  
k = d rag  s t ress  
( e )  = t i m e  d e r i v a t i v e  

ha, hk and ya, yk a r e  t h e  work-hardening and recovery func t i ons  
r e s p e c t i v e l y ;  they a re  g e n e r a l l y  f unc t i ons  o f  a p p l i e d  s t ress ,  temperature and 
s t a t e  v a r l a b l e s .  Equat ion ( 1 )  i s  the  i n e l a s t i c  s t r a i n  r a t e  o r  f l o w  law and 
equat ions ( 2 )  and ( 3 )  a r e  c a l l e d  evo lu t i ona ry  equat ions f o r  t h e  s t a t e  v a r i -  
ables.  I n  a d d i t i o n  t o  t h e  above r e l a t i o n s ,  we invoke t h e  assumption t h a t  t h e  
s t ress  r a t e  i s  p r o p o r t i o n a l  t o  t h e  e l a s t i c  s t r a i n  r a t e  by 

u = E ( t -  
- I  
E -  R i )  ( 4 )  

where E i s  t h e  Young's modulus o f  the  m a t e r i a l ;  t i s  t h e  t o t a l  s t r a i n ;  0 i s  
t h e  thermal expansion c o e f f i c i e n t ;  and T i s  t h e  temperature. 

By ass ign ing  approp r ia te  terms i n  t h e  e v o l u t i o n a r y  equations, several  
impor tan t  deformation phenomena o f  metals can be simulated by t h e  v i s c o p l a s t i c  
models. For example, by a l l o w i n g  the e q u i l i b r i u m  s t r e s s  a and drag  s t ress  k 
t o  vary  w i t h  an inc rease i n  cumulat ive i n e l a s t i c  s t r a i n  i n  equat ions ( 2 )  and 
( 3 ) ,  c y c l i c  hardening ( o r  so f ten ing )  o f  hys te res i s  loops o f  t h e  m a t e r i a l  can be 
modelled. The t r a n s i e n t  creep o r  s t ress  r e l a x a t i o n  phenomena a r e  represented 
by t h e  r a p i d  growth o f  t h e  s t a t e  va r iab les  d u r i n g  t h e  i n i t i a l  stage o f  load ing .  
Such growth becomes sa tura ted  as the  recovery terms i n  equat ions ( 2 )  and ( 3 ) ,  
t h e  second terms, become dominant. That i s ,  steady s t a t e  creep i s  reached when 
t h e  s t r a i n  work-hardening ( o r  so f ten ing )  process I s  i n  dynamic e q u i l i b r i u m  w i t h  
t h e  thermal recovery process. Other m e t a l l u r g i c a l  phenomena, such as t h e  
e f f e c t s  o f  anneal ing and warm-working, can be i nc luded  by i n t r o d u c i n g  appro- 
p r i a t e  terms i n  t h e  e v o l u t i o n a r y  equations. I n  a d d i t i o n ,  temperature depend- 

s t a t e  v a r i a b l e s  t o  change w i t h  temperature. One unique f e a t u r e  o f  t h e  v isco-  
p l a s t i c  theory,  d i f f e r i n g  f rom the  c l a s s i c a l  p l a s t i c i t y  theory, i s  t h a t  i t  does 
n o t  i n v o l v e  t h e  concept o f  a y i e l d  surface e x p l i c i t l y .  

ence of  the  mater ia l  be * - - l a l A - A  I I I L  IUUCU hu U J  u s l l m - r i n n  I tun l i ly  t h e  jne!ast!c stra!n 2nd 

By proposing var ious  mathematical expressions f o r  t h e  i n e l a s t i c  s t r a i n  and 
s t a t e  va r iab les ,  a number o f  v i s c o p l a s t i c  models have emerged i n  t h e  l i t e r a -  
t u r e .  The more no tab le  models a re  those due t o  H a r t  ( r e f .  4 ) ,  M i l l e r  ( r e f .  5 ) ,  

3 



Walker (ref. 6 ) .  Krieg, Swearengen and Rohde (ref. 7), and Robinson (ref. 8). 
Since the Hart model can be considered as a special case of Walker's, it will 
not be discussed herein. In this section, only the latter four models are 
briefly outlined in their uniaxial differential forms. 

Miller's Model 

The inelastic strain rate for Miller's model was assumed to be a hyperbolic 
sine function of the appliedistress and two state variables. The rate equa- 
tions for Inelastic strain and the two state variables for Miller's improved 
model (ref. 9) are1 

c * I  = Be' (sinh [(,,' a) 'j} sgn (u/E - a) 

( 6 )  
*I 

= H1c - HlB8' [sinh (Allal)ln sgn (a) 

where 

- H2C2Be8I [sinh(A2K 1.5) ]n 

*I H1 = Hi exp [ -  H3asgn(c )] 

if T 5 Tt T * 
e '  = exp {(-Q /RTt) In( t/T) t l]] 

* 
e '  = exp(-Q /RT) If T 2 Tt 

Qrecov [ln(Tt/T) t 1 1 1  if T 5 Tt {- RTt 
e'' = XI1 exp 

€9' = XI' exp { -  Qrecov /RT} if T 1 Tt 

with XI' = exp(R X ' )  
P 

'Some of the terms In Miller's latest model which simulate metallurgical 
behavior have not been included herein.with 
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Q 
recov = Q * [ l  + ( R  - 1 )  X I 1  

Q 

2 
X '  = ( 1  - X) i f  X l l  

X '  = 0 i f  X Z l  

u/E - a 
x =  

2/3 1.5 
( A  ) ( k )  

2 

I n  the  above equations 
r i a l  constants,  which, except f o r  E, a r e  temperature independent; T t  i s  t h e  
t r a n s i t i o n  temperature o f  metal .  Temperature dependence o f  t he  model i s  
in t roduced through t h e  use o f  f a c t o r s  8 '  and 8" ( a c t i v a t i o n  energ ies) .  The 
model cons iders both k inemat ic and I s o t r o p i c  hardening o f  t h e  m a t e r i a l  due t o  
t he  growth laws f o r  a and k .  I n  the o r i g i n a l  M i l l e r ' s  model ( r e f .  5) ,  t h e  
e q u i l i b r i u m  s t r e s s  was assumed t o  harden l i n e a r l y  w i t h  i n e l a s t i c  s t r a i n .  This 
c i rcumscr ibes a t r i - l i n e a r  curve i n  modeling c y c l i c  s t r e s s - s t r a i n  response. 
The model was subsequently mod i f i ed  ( r e f .  9) t o  accomnodate non l i nea r  hardening 
e f f e c t s  by a l l o w i n g  the constant H1 t o  vary  w i t h  a accord ing t o  equat ion ( 8 ) .  

B, E, n, HI, Hz,  Hg, A i ,  A 2 ,  C 2 ,  Q*, Rp, RQ a r e  mate- 

Walker's Model 

This  model was de r i ved  from a three 3-element mechanical model f o r  v isco-  
p l a s t i c  m a t e r i a l s  ( r e f .  6 ) .  I n  i t s  mathematical form, the  i n e l a s t i c  s t r a i n  i s  
expressed by a power law I n  t e r m s  o f  t h e  a p p l i e d  s t r e s s  and two s t a t e  v a r l -  
ab les.  The equations f o r  the i n e l a s t i c  s t r a i n  r a t e  and the  r a t e  dependent 
s t a t e  v a r i a b l e s  a re  

sgn(u - a) 
*I Iu - a? 
E =  

kn 
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k = k l -  
I 

k2 e -n 7 IC I 

I n  the  above equations the re  a re  n i n e  m a t e r l a l  constants,  namely m, n, n1, 
n2, n3, n4, n5, n6, n7, 00, k l  and k2. F o r  nonisothermal cond i t i ons ,  a l l  
m a t e r i a l  constants may vary w i t h  temperature. Since t h e  model conta ins t w o  
s t a t e  va r lab les ,  i .e., e q u i l i b r i u m  s t r e s s  and drag s t ress,  bo th  t h e  k inemat ic  
and i s o t r o p i c  hardening e f f e c t s  can be simulated. 
r i um s t r e s s  (eq. ( 1 8 ) ) ,  inc ludes both dynamic and s t a t i c  thermal recovery 
terms; whereas only  the s t a t l c  recovery was considered f o r  t h e  growth o f  drag 
s t ress ,  (eq. (19 ) ) .  Walker's model was formulated i n  bo th  d i f f e r e n t i a l  and 
i n t e g r a l  forms ( r e f .  1) .  
r e p o r t .  

The growth law f o r  e q u i l i b -  

Only the  d i f f e r e n t i a l  form i s  considered i n  t h i s  

Kr ieg,  Swearengen and Rohde's (KSR) Model 

The KSR model ( r e f .  7 )  I s  s i m i l a r  t o  Walker 's model, s ince i t  a l s o  uses a 
power law t o  represent the  i n e l a s t i c  s t r a i n  r a t e .  
equat ion i s  

The i n e l a s t i c  s t r a i n  r a t e  

E =  .I ~a - aln sgn(a - a )  
kn 

w h i l e  t h e  s t a t e  v a r i a b l e  r a t e  equat ions a r e  

& = A1c * I  - A 2 a  la1 (:3a2 - 1) 

n I; = A4 1;1 - A5(k - ko) 

The seven m a t e r i a l  constants i n  these equat ions a r e  n, A i ,  A2, A3, A4, 
As,  and ko, which can be temperature dependent. Both t h e  e q u i l i b r i u m  
s t ress  and drag s t ress  a re  inc luded i n  t h e  f o r m u l a t i o n  ( i . e . ,  eq. ( 2 0 ) ) .  The 
growth laws con ta in  t w o  terms, t h e  l i n e a r  hardening and s t a t i c  recovery terms. 
These terms produce t r i - l i n e a r  c y c l i c  s t r e s s - s t r a i n  curves o r  h y s t e r e s i s  loops. 
This behavior may be mod i f i ed  by assuming t h e  constant  
t o  be very smal l .  Furthermore, c y c l i c  hardening cou ld  be modelled by l e t t i n g  
the  constants A4  and A 5  have smal l  values i n  equat ion (22) so t h a t  t h e  
drag s t r e s s  grows s low ly  w i t h  deformat ion.  

A3 i n  equat ion (21)  

Robinson ' s Model 

This  model ( r e f .  a ) ,  t o  some ex ten t ,  I s  a l s o  analogous t o  t h e  prev ious 
ones. That i s ,  the I n e l a s t i c  s t r a i n  r a t e  I s  assumed t o  be a power f u n c t i o n  o f  
t h e  e f f e c t i v e  s t r e s s  and two s t a t e  v a r i a b l e s .  The equat ions f o r  t h e  i n e l a s t i c  
s t r a i n  r a t e  and the r a t e  dependent s t a t e  v a r i a b l e s  a r e  
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where 

. -B e 1  m-13 
a = HIa''I c - Ria"( sgn(a) 

1 x > l  

2 l - ( l - x ) / 2  0 5 x 5 1  

( 1  + x )2 /2  - 1 < x < _ o  - 

0 x < -1 

P ( x )  = 

x > o  

x 5 0  

The e i g h t  m a t e r i a l  constants i n  these equat ions a r e  A, n, k, I3, m, H, a0 
and R; W 1  and W2 a re  smoothing constants t o  account f o r  d i s c o n t i n u i t i e s  i n  
the  m a t e r i a l  c h a r a c t e r i z a t i o n  and t h e i r  values a r e  se lected by t h e  ana lys t .  
For nonisothermal cond i t i ons ,  temperature dependence o f  t h e  model i s  a l lowed 
by v a r y i n g  t h e  constants A and R w i t h  temperature. I n  t h e  above equations, 
t h e  drag s t ress  was assumed t o  be constant.  
Robinson's model on l y  considers t h e  k inematic hardening o f  m a t e r i a l s  f o r  which 
i t s  i s o t r o p i c  hardening has a l ready become saturated.  I f  i s o t r o p i c  hardening 
i s  des i red ,  i t  can be e a s i l y  in t roduced w i t h  a growth law f o r  k i n  t h e  form 
s i m i l a r  t o  equat ion (22)  ( K S R ' s  model). 

Thus, t h e  c u r r e n t  v e r s i o n  o f  

ANALYSIS PROCEDURE 

Wi th  t h e  u n i a x i a l  v i s c o p l a s t i c  models o u t l i n e d  I n  t h e  previous sect ion,  
i t  i s  p o s s i b l e  t o  analyze t h r e e  basic types o f  m a t e r i a i  response. Tne types 
o f  response a r e  

(1) Monotonic o r  c y c l i c  s t r e s s - s t r a i n  response 
( 2 )  Creep response 
( 3 )  St ress r e l a x a t i o n  
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Also, any combination of the above responses can be obtained by specifying 
appropriate loading histories. 
isothermal or nonisothermal conditions. Caution should be given, however, to 
nonisothermal analysis, since the constitutive model must be properly defined 
for such a condition. Each of the basic response types are briefly described 
below. 

The analysis may be performed for either 

Monotonic or Cyclic Stress-Strain Response 

For viscoplastic materials, time dependency is an important consideration 
in the calculation of material response. A s  an example, for the purpose of 
describing the analysis procedure, consider for a given strain rate the cyclic 
stress-strain response of a material. In this case it Is divided into several 
segments for the purpose of proceeding with the analysis: (a) loading; (b) 
unloading (or reverse loading); (c) loading again, etc. For each loading (or 
unloading) segment, the analyst must supply the following information to begin 
the analysis: 

Temperature T 

Strain rate t 

Time increment A t  

Strain limit t~ 

Using the strain limit, a stress limit UL may be supplied to terminate the 
analysis of a load segment. Based on this information, the following steps 
are used in the analysis procedure to calculate the stress and strain at any 
time tn+l: 

Step 1. Calculate the increments of total strain and inelastic 
strain (assuming isothermal condition for discussion 
purposes) according to 

* I  where is computed from equation (1). The specific expression of t Is 
obtained from whichever viscoplastlc model is selected. 

Step 2. Calculate the stress rate and stress increment from 

*I 
a = E ( c - c )  
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Step 3. Update the total stress, total strain and the state 
var i ab1 es i nvol ved . 

u(tn+l = U(tn) + Au 

c(tn++ = c(t n ) + Ac 

a( tn+l ) = a(tn) + bo 

k( tn+l ) = k(tn) + Ak 

The above calculation steps are repeated until the total strain or stress 
reaches the specified limit. 

Creep Response 

Creep response is generally defined as the time-dependent deformation of 
a material under constant stress. In the laboratory, for example, a uniaxial 
stress is applied to a specimen in a two-step loading history to simulate 
creep. That is, the stress Is increased at a constant rate to a prescribed 
value in a short time interval, say [0, tl], then held constant afterwards 
as shown in figure l(a), where tl << t2. 
ing, creep tests may also be conducted under multiple-step loading as shown in 
figure l(b) or under constant stress at any point on the loading/unloading 
branch of hysteresis loops (fig. l(c)). To consider these different cases, a 
creep analysis can be conveniently performed by dividing its loading history 
into two or more segments. For example, the two-step loading shown in figure 
l(a) is divided into: segment 1 - stress is increased form zero to a constant 
value, and segment 2 - stress is held constant. The required data the analyst 
must supply for each of the two load segments are 

In addition to two-step load- 

Segment 1 

(a) Temperature T 
(b) Strain Rate c 

0 

(c) Time step size At 
(d) Strain limit E L  or stress limit UL 

Segment 2 

(a) Temperature T 

(c) Hold time t H 
(b) Time step size At 

Division of the loading history for multlstep or cyclic loadings can be made 
by repeating this procedure. 
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Stress Relaxation 

In contrast to creep, stress relaxation is obtained by applying a con- 
stant strain to a specimen and holding this strain for an extended time 
period. In this case, the analyst must specify: temperature, strain rate, 
time increment, strain limit and hold time. 
herein for two-step or multistep loadings is almost identical to that of creep 
anal ys i s . 

The analysis procedure involved 

NUMERICAL INTEGRATION 

In order to calculate the uniaxial response (either stress or strain) of 
a material using a viscoplastic theory, a system of highly nonlinear differen- 
tial equations, such as those of equations (1) to (4) must be solved, by 
numerical integration. It is well known that these equations have "stiff" 
regimes and special attention is, therefore, required to solve them numeri- 
cally. For example, the inelastic strain rate in equation (1) is a strong 
nonlinear function of the stress and the state varlables a and k. That is 
to say, any small variation in a, a and k can cause significant changes in 

the value of TI. Similar behavior is also found In the growth laws (i.e., 
eqs. (2) and (3)). Therefore, a very small time step is often required to 
integrate these equations by numerical methods. 

In this section, various methods for solving the nonlinear differential 
The question o f  convergence equations of viscoplastic models are discussed. 

control and possible ways o f  selecting the size o f  the time step are also con- 
sidered. For the purpose of dlscusslon, equations (1) to (3) are replaced by 
the following matrix expression 

This expresslon represents a system of nonlinear ordinary differential equa- 
tions. 
tlons (e.g., refs. 10 and 11). practical considerations must be given to three 
important issues: (a) their suitability for large scale stress analysls; (b) 
their solution accuracy; and (c) computer solution time. For instance, Gear's 
multlstep method (ref. 12) was utilized effectively by Miller (ref. 13) for 
obtainlng uniaxial vlscoplastic response of Zircaloy, but the method Is not 
suitable for incorporation into a finite element analysis due to the coupling 
of global degrees of freedom for multiple time steps. Moreover, the method 
requires an independent procedure to start-up an analysis (ref. 14). 

Although various numerical schemes can be used to solve these equa- 

In view o f  the above dlscusslon, three simple numerical schemes were 
selected for the present analysls, namely the forward Euler (explicit), 
expllclt trapezoidal and implicit trapezoidal integration schemes. 

In the forward Euler integration scheme, the value of y at time tn+l 
i n  equation (32) is approximated by 
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where 

If the above equation is employed in an analysis of the "stiff" differential 
equations, very small time steps must be enforced to avoid any numerical 
Instability. 

Instead of using equation (33), the value of y at time tn+l m a y  be 
approximated by an implicit trapezoidal rule 

where fn+l = f (Ynt1) With the application of the Newton-Raphson method, 
equation (34) is rewritten for the 1-th iteration 

where I = Identity matrix 

J = -  af ( A  nonsymetrlc Jacobian matric) aY 

F = ln + At*f /2 -n (37) 

(Eq. (35) is also called an implicit trapezoidal scheme wIth iterations.) If 
this method is employed in an analysis, the imediate question is - how can it 
be determined whether the solution has converged or not? Several convergence 
criteria could be used for this purpose. 
Iterative value of by such that 

One convenient way I s  to check the 

wnere I: I I  = Eucl!dea!! nnrm 

To1 = Tolerance ratio 

Presently, the above criterion is implemented Into the computer program VPMODEL 
to determine the convergence of a solution. The Implicitness o f  fn+l in 
equation (34) may be removed by approximating 
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n Jn = (E) t=t 
Thus, equation (34) becomes 

The above equation is called the explicit trapezoidal scheme. 
schemes have been implemented Into VPMOOEL for the study of numerical efficiency. 

These three 

Another concern is the selection of the time step. It Is posslble to 
estimate a time increment if the strain rate is expressed by a power law 
(Norton's law) of the form 

c = A u e  n 

where A and n are material constants and 

u = ( U  - a ) / k  (43) e 

When the Euler forward method is employed, a step size for obtaining a stable 
solution is given by (ref. 15) 

0 e 
nEi 

AtS < - ( 4 4 )  

where 
Ats = Largest time step that can be used for obtaining a stable 

solution 

and 
E = Young's modulus 

Obviously, the above estimate is valid only if the elastic strain rate is much 
smaller than the inelastic rate. If the constitutive equation for inelastic 
strain rate is considerably different from the Norton's power law, then an 
approximate relationship In the form of equation (42) can be established. 

wl th 

n 
E = A U  

1 d lna 
n - d ln- 

- -  - 
E 

(45) 
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I n  view o f  t h e  above d i scuss ion  and computer exper imentat ion runs us ing  
VPMODEL, t h e  f o l l o w i n g  s tep s i z e  i s  suggested f o r  h i g h  s t r a i n - r a t e  

- lO-b/sec) monotonic o r  c y c l i c  loading:  

Euler  forward i n t e g r a t i o n  scheme A t  = A t s  

Trapezoidal  i n t e g r a t i o n  w i t h  o r  w i t h o u t  i t e r a t i o n s  A t  = 5 A t s  

For s teady-state creep o r  s t r e s s  r e l a x a t i o n  a much l a r g e r  s tep  s i z e  may be 
employed . 

For d i f f e r e n t  types o f  loading,  an automatic t ime  s tep  c o n t r o l  i s  use fu l ,  
f i r s t  t o  speed-up computation t ime and second t o  reduce data s torage requ i re -  
ments. This  i s  done according t o  the f o l l o w i n g  c r i t e r i a :  

Le t  

i t  a t r i a l  s tep s i z e  
e ca l cu la ted  e r r o r  
emax maximum e r r o r  l i m i t  
emin minimum e r r o r  l i m i t  
A t  s tep s i z e  used f o r  a n a l y s i s  

( A t  i s  f u r t h e r  halved u n t i l  e 5 emax) 

(Th is  process i s  repeated u n t i l , e m i n  < e 5 emax.) 

The d e f i n i t i o n  o f  t he  e r r o r  e var ies depending on which i n t e g r a t i o n  scheme i s  
t o  be used. The e r r o r  I s  measured by 

e - Vfn f o r  t h e  Euler  scheme 

and 

e - v 2 f n  f o r  t h e  t rapezo lda l  scheme 

?2 fn  

These equat ions ho ld  f o r  t he  backward d i f f e r e n c e  approximat ion.  I n  view o f  
t h e  above r e l a t i o n s h i p s ,  t he  measures f o r  e r r o r  a r e  chosen t o  be 
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2 
IIV fnli *At for the Euler scheme 
II yn II 

e =  - 

2 
1 1 ~ f n l l  *At for the trapezoidal scheme 
II yn II e =  

(49) 

On the other hand, i f  the implicit trapezoidal scheme is employed, it is 
more convenient to adopt the relationship given in equation (38) for the 
calculation of error. 

COMPUTER IMPLEMENTATION 

The analysis procedure described has been programed and the four visco- 
plastic models discussed have been incorporated into a computer program called 
VPMODEL to calculate the uniaxial responses of materials. The uniaxial 
responses include cyclic stress-strain history, creep, stress relaxation, and 
any combination of these phenomena. It is important to recall that the pur- 
poses of writing this program are intended for: 
predicted by a theory with experimentally measured data; (b) performing para- 
metric studies of material constants for a particular viscoplastic model, (c) 
performing comparative studies of various viscoplastic models; and (d) investi- 
gating different numerical Integration schemes in terms of their computational 
efficiency. 

(a) correlating the responses 

With the above purposes i n  mind, the following features are included in 
the program: 

(1.) The viscoplastic models and Integration schemes were coded (in 
Fortran) In separate modules so that they can be easily modified, added to or 
deleted from the program. 

(2.) All computations are i n  an interactive mode, and the input data are 
specified in conversational form and free-field format. 

(3.) Analysis results can be plotted graphically and/or printed 
numerically. 

At present, material constants of two high temperature alloys for the specific 
models listed below are included in the program: 

Hastelloy X - material 
2-1/4 Cr-1 Mo Steel - Robinson's model 

- Miller's, Walker's and KSR's models 

Other material types or material/model combinations, if known, may be added to 
the program quite easily by the user. 

The program begins with four primary decisions to be made by the user, 
name 1 y 

( 1 )  Material model selection 
(2) Material type 
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c 

( 3 )  
(4) Analysis type 

Integratlon scheme to be used 

A menu for each of the above four items is listed i n  figure 2. After the 
user has made the selections, VPMODEL will proceed with the corresponding 
analysis in accordance with the analysis procedure outlined in section 3. At 
the end of each load segment, the user has several options to either continue 
the analysis, plot the results, or terminate the execution. A flow chart for 
the analysis of VPMODEL is shown In figure 2. 

The graphics part of the program was written by using a Calcomp plotting 
package with the plotting device being either the Calcomp plotter or the 
Tektronlx graphics terminal, or their equivalent. The free-field input format 
was coded externally so that the program does not rely on the availability of 
such software on a particular compiler. 

EXAMPLES 

To demonstrate the utility of the program VPMODEL, seven example problems 
are included i n  this section. Two alloys are considered, namely Hastelloy-X 
and 2-1/4 Cr-1 Mo ferretic steel. Hastelloy-X is used for jet engine combustor 
liners whereas the ferretic steel i s  a typical steam generator material for ad- 
vanced nuclear reactors. The material constants of Hastelloy-X for the Miller, 
KSR and Walker models are given in references 1 and 2. Materlal constants for 
the ferretic steel with Robinson's model are reported in reference 8. 

Cyclic Stress-Strain Response Using Walker's Model 

The cyclic response of Hastelloy-X, represented by Walker's model, is 
considered first. In this case, the following analysis parameters were 
specified: 

Temperature T = 1600' F (871O C) 

Straln rate E = 3.87 x l0-3/sec 

Strain limit E L  = 0.006 

Step size At = 0.04 Sec 

Integration method = Explicit trapezoidal scheme 

At first, one full cycle of load, consisting of three loading segments, was 
imposed as shown below 

Segment 1 - Loading 0 5 E 5 EL 
Segment 2 - Unloadlng C L  > c - E L  
Segment 3 - Loading -CL E 5 E L  

Corresponding to the above three loading segments, the following response 
curves were plotted: 

(a) Stress versus Straln (fig. 3) 
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(b )  Back s t ress  versus I n e l a s t i c  S t r a i n  ( f i g .  4 )  
( c )  Back s t ress  versus T o t a l  S t r a i n  ( f i g .  5) 

To o b t a i n  t h e  c y c l i c  s t r e s s - s t r a i n  response o f  t h e  m a t e r i a l ,  another unloading 
segment (segment 4; - C L  < E < E L )  was added t o  t h e  prev ious t h r e e  segments 
and t h e  response was p l o t t e d  f o r  t h e  l a s t  two l o a d i n g  segments as shown i n  
f i g u r e  6. The purpose o f  app ly ing  two e x t r a  l o a d i n g  segments i s  t o  ensure 
t h a t  Hastel loy-X has reached i t s  saturated s t a t e  due t o  c y c l i c  hardening. 
S i m i l a r  responses were obtained f o r  d i f f e r e n t  s t r a i n  r a t e s  a t  t h e  same 
constant  temperature, i .e . ,  

S t r a i n  ra tes  o f  
l / s e c  and corresponding s tep s i z e s  o f  
sec. 

= 3 . 6 6 ~ 1 0 - ~ ,  3 . 7 0 ~ 1 0 - ~ ,  1 . l l ~ l O - ~  and 1 . 2 5 ~ 1 0 - ~  
t = 0.4 sec, 4 sec., 1 2  sec, 80 

The above r e s u l t s  a r e  a l s o  shown I n  f i g u r e  6. 
t i c a l  t o  those i n  f i g u r e  59 o f  re ference 1. 

These curves a r e  almost iden- 

St ress Relaxat ion Test Using Walker 's Model 

A s t ress  r e l a x a t i o n  case can be obtained by imposing a constant  s t r a i n  
h i s t o r y  t o  t h e  m a t e r i a l  concerned. The r e l a x a t i o n  phenomenon o f  Haste l loy-X 
based on Walker's model i s  i l l u s t r a t e d  w i t h  t h e  f o l l o w i n g  l oad ing  c o n d i t i o n :  

Constant temperature T = 1600" F (871' C )  

S t r a i n  r a t e  E = 3.87 x l0-3/sec 
e 

S t r a i n  l i m i t  C L  = 0.006 
Hold t ime t H  = 50 sec. 
I n i t i a l  s t e p  s i z e  b t  = 0.40 sec. 

I n i t i a l l y ,  t h e  m a t e r i a l  was subjected t o  one f u l l  c y c l e  o f  s t r a i n s ,  - E L  < c 
< E L  (see f i g .  7 ) .  Then i t  experienced s t ress  r e l a x a t i o n  under constant  
s t r a i n  ( e  = C L )  with a ho ld  t ime t H  = 50 sec a t  t h e  maximum s t ress  p o i n t  
as shown I n  f i g u r e  7 .  The t o t a l  load h i s t o r y  was a p p l i e d  i n  f o u r  segments: 

Segment 1 - Loading O S C S C L  

Segment 2 - Unloading " L  > c 2 - E L  

Segment 3 - Reloading - C L  < c 5 E L  

Segment 4 - Constant S t r a i n  c = t~ 

The i n t e g r a t i o n  scheme used was t h e  i m p l i c i t  t r a p e z o i d  r u l e  w i t h  v a r i a b l e  s tep  
s i z e  f o r  a l l  t h e  four  load segments. The c a l c u l a t e d  s t r e s s  h i s t o r y  ( o r  r e l a x -  
a t i o n  curve) I s  shown i n  f i g u r e  8, where t h e  s t r e s s  h i s t o r y  corresponding t o  
the  f i r s t  s t r a i n  cyc le  i s  omi t ted.  
value i s  about 37 k s i  (255.3 MPa) and i t  reduces t o  12.5 k s i  (86.3 MPa) asymp- 
t o t i c a l l y  a f t e r  undergoing 50 seconds o f  r e l a x a t i o n .  

A t  t h e  beginning o f  h o l d  t ime, t h e  s t r e s s  
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Cyclic Stress-Strain Response Using Robinson's Model 

The third example is to obtain cyclic stress-strain response of 2-1/4 
Cr-1 Mo steel using Robinson's model. The material is subjected to uniaxial 
stress with the following conditions: 

Constant temperature T = 1000" F (538" C) 

0 

Strain rate E = 2.4 x 10-2/hr 

Step size at = 2 x 10-5 hr 
Integration scheme = Explicit trapezoidal method 

Strain limit E L  = 0.0032 

Initially, the uniaxial loading was applied in 3 segments: (a) loading; 
(b) unloading; and (c) reloading, similar to example 1. Corresponding to the 
above loading and unloading segments, two response curves were plotted. 

(a) Stress versus Strain (fig. 9) 
(b) Back Stress versus Inelastic Strain (flg. 10) 

It is seen in figure 9 that corresponding to the same strain limit, the stress 
for the reloading segment is higher than the stress of the initial segment 
(virgin material). This phenomenon is associated with strain hardening effect 
portrayed by the model. The hardenlng effect becomes saturated after the 
material has undergone one full cycle of loading. Therefore, i n  order to 
obtain a stable cyclic stress-strain response, another unloading segment was 
added and the corresponding stress-strain plot is shown ln figure 11. In 
addition to the strain rate of 2.4~10-~/hr, two different strain rates were 
analyzed, i.e., = 0.24~10-~ and 0.024~10-~/hr, and the results are plotted 
in figure 11. 

Creep Response Using Robinson's Model 

To demonstrate how to obtain the creep response by using VPMOOEL, we 
consider Robinson's model as an example. The test condition is speclfied as 
f 01 lows : 

Constant temperature T = 1000" F (538" C) 

Strain rate E = 0.6x10-3/hr 
0 

Stress limits OL = 8, 10, 1 1 ,  12.5, 15 ksi 

Hold times tH = 2000, 2000, 2000, 870, 200 hr 
(ksi = 6.9 MPa) 

Before the creep loading, a full cycle of stress, a = f UL, was applled to 
t h e  m a t e r j a !  so t h a t  I t s  s t r a i n  hardening became saturated. Then the stress 
was held constant at the maxlmum tensile stress polnt, i.e., a = UL, for the 
designated hold time. In the analysis, the irnpliclt trapezoidal scheme with 
variable step sizes was employed. The initial step size for all stress values 
was: 
internally specified convergence tolerance. 

at = 1 hr, then the program computed required step size according to 
The calculated creep responses 

17 



(inelastic strain versus time) corresponding to the hold times are shown i n  
figure 12. Again, the creep curves obtained from VPMODEL are identical to 
those generated by Robinson (ref. 8). 

Comparison of Three Viscoplastlc Models 

In this example, the stress-strain response of Hastelloy-X material is 
predicted by the three different models (Walker, KSR and Miller) for the same 
temperature, strain rate and loading condition. For this purpose, we have 
considered five cases by varying the temperature and strain rate as defined in 
table 1.  Only monotonic loading (one load segment) was imposed for each case 
and the stress-strain plots for all five cases are shown in figures 13 to 17. 
Ideally, for the same material under the same loading condition, the predicted 
responses from the different viscoplastic models should be the same. This is 
not the case according to the results shown in figures 13 to 17. If we use 
Walker's model as a basis for comparison, KSR model correlated with Walker's 
prediction quite well for T = 1400" F (760" C), c = 3.87x10-3/sec, whereas 
Miller's model under-estimates the stress after the inelastic strain is initi- 
ated as shown in figure 13. On the other hand, as shown in figures 14 and 15, 
for the same temperature but at intermediate or lower strain rates, Miller's 
model correlates more closely with Walker's model than KRS model. Similar 
qualitative results are shown In figures 16 and 17 for a higher temperature, 

a 

T = 1800" F (982" C) . 

Numerical Stability Using Walker's Model 

To illustrate the numerical instability problem, a monotonic load case is 
considered. The stress-strain response based on Walker's model was calculated 
for three different step sizes uslng the forward Euler integration scheme, 
with t = 0.08, 0.32 and 0.40 sec. The results are shown in figure 18. It is 
obvious that significant numerical oscillation is seen for t = 0.40 sec and 
the oscillation diminishes as the step size is reduced. To make a further 
qualitative comparison of the three integration methods in VPMODEL, we 
consider again the same stress-strain response of Hastelloy-X using Walker's 
model. The problem was run by using the Euler forward, explicit and implicit 
trapezoidal methods (no interactions). According to the results shown in 
figure 19, the trapezoidal methods are far more accurate than the Euler method. 

Thermomechanical Fatigue Loops 

Thermomechanlcal fatigue loops (TMF) are defined in this study to be 
typical (or simulated) loading histories of turblne engine combustor liners. 
Under these realistic loading conditions, both mechanical load (in the form of 
imposed strain) and temperature are subjected to large changes as functions of 
time. Having accurate predictions of the stress/strain response for these 
loading conditions is essential In the structural integrity and durability 
assessments of combustor liners, particularly at the critical locations in a 
combustor liner (usually where fatigue occurs). 
have been conducted to develop time-temperature dependent constitutive 
relationships and improve finite element structural analysis procedures 
(refs. 1 and 2). 

To this end, research programs 
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Rather than using sophisticated finite element structural analysis 
programs for evaluation and comparison of the viscoplastic models for dif- 
ferent TMF loop, the uniaxial stress/strain responses of Hastelloy-x can be 
determined from the viscoplastic models in VPMODEL. Considered herein for 
illustrative purposes are three TMF loops: Case 1 - Closed symmetric loop, 
Case 2 - Open symmetric loop, and Case 3 - Open nonsymmetric loop. With these 
specified strain and temperature histories, stress responses were calculated in 
VPMODEL with the Walker, KSR and Miller models. These examples are considered 
for two reasons: (1 )  to demonstrate the capability of VPMODEL in handling non- 
isothermal loadings; and (2) t o  compare the predicted uniaxial responses wtth 
the experimental data reported in reference 2. 

For Case 1 ,  the temperature varies sinusoldally with time from 800" to 
1600" F (427" to 871" C) with a period of 1 min (see fig. 20). Plots of the 
corresponding strain histories (also varying in a sinusoidal form) and the 
strain-temperature relationship are shown i n  figures 21 and 22. Analysis 
results obtained from the three models in VPMdDEL, which are identical with 
those from reference 2, are compared with experimental data in figures 23 to 
25. It is noted that the experimental data stabilized after 2 cycles. 
Figure 23 shows that prediction made by Walker's model requires several cycles 
of loading-unloading before the response stabilizes, and the model considerably 
over-predicts the stress response. The prediction made by Miller's model, 
shown in figure 24, tends to reach the steady-state in the third cycle; 
however, the stress-strain response becomes almost a straight line as it 
approaches the steady-state condition. In other words, the hysteresis effect 
is erased by the effect of temperature, which is contrary to the experimental 
data. The prediction made by the KSR model, on the other hand, shows very 
good agreement with the experimental measurements as seen in figure 25. 

For the case o f  the open symmetric loop, Case 2, the temperature history 
(fig. 26) is identical to that o f  Case 1: The strain history and strain- 
temperature plots are given in figures 27 and 28. Comparisons between 
predictions and experimental data are shown In figures 29 to 31. Both the 
Miller and KSR models attain the steady-state condition during the second TMF 
loop, while Walker's model stabilizes in the fourth cycle. Tenslle yields at 
two locations in the loading branch of the hysteresis loops, as indicated in 
figures 29 and 31, were predicted by both the Walker and KSR models, while 
Miller's model did not reflect such an effect (see fig. 30). For this loading 
condition, the predictions by Walker's and Miller's models are reasonably close 
to the experimental data, while the KSR model over-predicted stress reduction 
for the reverse loading branch of the TMF loop. 

The temperature and strain histories, and strain-temperature relationship 
for Case 3 are shown i n  figures 32 to 34, respectively. In this case, the 
temperature varies sinusoidally from 950" (510" C) and 1750' F (954" C) for 
1 min with a hold time of 40 sec at the peak temperature. The strain is held 
constant at -0.43Qfor the hold-time period. Analysis results for the three 
rnociels 3nd exper lzenta!  data are  cnmpared i n  f i g u r e s  35 to 37. It is seen 
from these figures that in approaching the steady-state condition, the same 
behavior is exhibited as the previous loading case. Since the constant strain 
hold time corresponds to a constant temperature, theoretlcal predictions 
should show some degree of stress relaxation. This is indeed the case as seen 
in the stress-strain plots (figs. 35 to 37). However, the experimental data 
do not show the distinct stress relaxation changes as do the predictions. 
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Nevertheless, stress relaxation may have occurred gradually during the experi- 
ment. Miller's model predicts a larger amount of stress relaxation than the 
Walker and KSR models. Furthermore, Miller's model does not produce tensile 
yield in the tensile portion of the cycle and simply exhibits elastic behavior 
as shown in figure 36. Because of these two factors, the predictions due to 
the Walker and KSR models are slightly better than those from Hiller's model 
for the third loading case. 

CONCLUSIONS 

A computer program called VPMODEL was developed to calculate the uniaxial 
responses of material by using four viscoplastic models, namely Miller, Walker, 
Krieg-Swearengen-Rohde, and Robinson models. The nonlinear uniaxial responses 
which can be analyzed are cyclic stress-strain, creep, stress relaxation, 
thermomechanical fatigue loop or any combination of these phenomena. In 
additlon, three integration schemes, +.e., Euler forward difference, explicit 
and implicit trapezoidal methods with Newton-Raphson iterations, were imple- 
mented into the program for the study of numerical characteristics of the 
various constitutive models. Since VPMODEL was written on a modular basis, 
addition of any new viscoplastic model or modification of an existing model 
can be made without major coding effort. For this reason, the program serves 
as an efficient tool for development and refinement of viscoplastic models. 
It can also be used for understanding the physical nature of a given consti- 
tutive model as well as evaluating and comparing different viscoplastic models 
and numerical integration schemes for use in structural analysis for aerospace 
and other industry applications. 
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APPENDIX A - USER'S INSTRUCTION 

Summary of Analysis Features 

The current version of VPMODEL consists o f  the following analysis features: 

(a) Miller, Walker, KRS, and Robinson viscoplastic models. 
(b) Uniaxial responses for monotonic or cyclic loading, creep stress 

relaxation or any combination of these phenomena. 
(c) Isothermal or nonisothermal (e.g., thermal-mechanical cycling) 

condi ti on. 
(d) Integration schemes including forward Euler method, explicit 

trapezoidal method, and implicit trapezoidal method with 
Newton-Raphson iteration. 

(e) Conversational data input with free-field format. 
(f) Interactive computations 
(9) Plotting capability on graphics terminal. 

Nomenclature 

In the conversational questions for data input to VPMODEL, several 
terminologies are referenced and they are described as follows: 

Execution - Each time when the user loads the VPMODEL program into 
computer to perform one or several analyses, it is called 
an 'execution'. This is also equivalent to a terminal 
ses s 1 on. 

Case - During each execution (or terminal session), the user may 
wish to perform one or several cases of analysis; for 
example, Case 1: Cyclic stress-strain response using 
Walker's model, Case 2: Cyclic stress-strain response 
using Miller's model, etc. 

Segment - Each case may consist of one or more load segments. 

Hold Time - The time period during which creep under constant stress or 
stress relaxation under constant strain is being exercised. 

Time Limit - The maximum time at which the analysis of a load segment 
terminates. 

Stress Limit- The maximurn or minimum stress value (including the 
algebraic sign) at which the analysis of a load segment 
terminates. 

Strain Limit- The maximum or strain value (including the algebraic sign) 
at which the analysis of a load segment terminates. 
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L i m i t a t i o n s  

VPMODEL has several  l i m i t a t i o n s  t h a t  t h e  user must be aware o f :  

(a )  Ma te r ia l  constants  a re  a v a i l a b l e  on l y  f o r  Haste l loy-X - Walker 's 
model, M i l l e r ' s  model and KSR's model and f o r  2-1/4 Cr-1 Mo - S tee l  
Robinson's model. 

( b )  The maximum number o f  data p o i n t s  i s  l i m i t e d  t o  '4000' f o r  t h e  
var iab les :  a, E, AE, a, k, T, and t. This  l i m i t a t i o n  can be 
removed by changing t h e  a r r a y  s izes  i n  COMMON/STAVAR/ i n  t h e  computer 
program. 

( c )  Calcomp p l o t t i n g  rou t i nes  o r  i n t e r f a c e  r o u t i n e s  f o r  I B M  TSS/370 
graphics system a re  requ i red .  

I n s t r u c t i o n s  

Since t h e  data i n p u t  procedure f o r  VPMODEL was w r i t t e n  i n  a conversa t iona l  
form, no a d d i t i o n a l  i n p u t  i n s t r u c t i o n s  are  necessary i n  order  f o r  t h e  user t o  
run  t h e  program. For each te rm ina l  session, t h e  user needs on ly  t o  p rov lde  t h e  
ana lys i s  da ta  i n  answering those quest ions prompted by t h e  program and which 
appear as a menu on the  te rm ina l  screen. The f o l l o w i n g  steps a r e  fo l l owed  i n  
order  t o  run  t h e  program on Lewis '  I B M  370-3033. 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Step 6 

Logon I B M  370-3033 

Load the  program i n t o  t h e  system by e n t e r i n g  "vpmodel', a procdef 
which compiles t h e  program and prepares i t  f o r  execut ion.  

Provide i n p u t  da ta  by answering t h e  quest ions prompted and 
execute t h e  program f o r  t h e  case be ing  analyzed. 

Provide i n p u t  da ta  f o r  o b t a i n i n g  r e s u l t s  (g raph ics ,  l i s t i n g s ,  
hard copy, e t c . )  

Terminate the  ana lys i s  ( o r  execut;ion) by e n t e r i n g  '0' ( f o r  s top)  
from procedure menu. 

Logoff  
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TABLE I .  - DIFFERENT TEST CONDITIONS FOR 

MODEL COMPARISON 

Case 

1 
2 
3 
4 
5 

Temperature 

1400" F (760" C) 
1400" F (760" C) 
1400" F (760" C )  
1800" F (982" C )  
1800" F (982" C) 

S t ra ln  r a t e  

3 . 8 7 ~ 1 0 - ~ 1 / s e c  
3 . 6 6 ~ 1 0 - ~ 1 / s e c  
1.25x10-61/sec 
3 . 8 7 ~ 1 0 - ~ 1  /sec 
3 . 6 6 ~ 1  0-41 /sec 

St ra in  l l m l t ,  
percent 

-~ 

0 .6  
.6  
.6  
.6  
.6  
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1 - Ual ker 2 - Miller 
3 - KSR 3 - Robinson 

1 - Hastelloy X 

2 - 2 1/4 Cr-1 Mo 

1 - -  Forward Euler Method 
2 - Explicit Trapezoidal 
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Figure 2. - A flow chart for VPMODEL. 
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Figure 2. - Concl uded. 
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