188 research outputs found

    The thermal operator representation for Matsubara sums

    Full text link
    We prove in full generality the thermal operator representation for Matsubara sums in a relativistic field theory of scalar and fermionic particles. It states that the full result of performing the Matsubara sum associated to any given Feynman graph, in the imaginary-time formalism of finite-temperature field theory, can be directly obtained from its corresponding zero-temperature energy integral, by means of a simple linear operator, which is independent of the external Euclidean energies and whose form depends solely on the topology of the graph.Comment: 9 pages, 1 figure, RevTe

    An operator representation for Matsubara sums

    Full text link
    In the context of the imaginary-time formalism for a scalar thermal field theory, it is shown that the result of performing the sums over Matsubara frequencies associated with loop Feynman diagrams can be written, for some classes of diagrams, in terms of the action of a simple linear operator on the corresponding energy integrals of the Euclidean theory at T=0. In its simplest form the referred operator depends only on the number of internal propagators of the graph. More precisely, it is shown explicitly that this \emph{thermal operator representation} holds for two generic classes of diagrams, namely, the two-vertex diagram with an arbitrary number of internal propagators, and the one-loop diagram with an arbitrary number of vertices. The validity of the thermal operator representation for diagrams of more complicated topologies remains an open problem. Its correctness is shown to be equivalent to the correctness of some diagrammatic rules proposed a few years ago.Comment: 4 figures; references added, minor changes in notation, final version accepted for publicatio

    Identity of the imaginary-time and real-time thermal propagators for scalar bound states in a one-generation Nambu-Jona-Lasinio model

    Full text link
    By rigorous reanalysis of the results, we have proven that the propagators at finite temperature for scalar bound states in one-generation fermion condensate scheme of electroweak symmetry breaking are in fact identical in the imaginary-time and the real-time formalism. This dismisses the doubt about possible discrepancy between the two formalisms in this problem. Identity of the derived thermal transformation matrices of the real-time matrix propagators for scalar bound states without and with chemical potential and the ones for corresponding elementary scalar particles shows similarity of thermodynamic property between the two types of particles. Only one former inference is modified, i.e. when the two flavors of fermions have unequal nonzero masses, the amplitude of the composite Higgs particle will decay instead grow in time.Comment: 5 pages, revtex4, no figure

    Shear viscosity in ϕ4\phi^4 theory from an extended ladder resummation

    Full text link
    We study shear viscosity in weakly coupled hot ϕ4\phi^4 theory using the CTP formalism . We show that the viscosity can be obtained as the integral of a three-point function. Non-perturbative corrections to the bare one-loop result can be obtained by solving a decoupled Schwinger-Dyson type integral equation for this vertex. This integral equation represents the resummation of an infinite series of ladder diagrams which contribute to the leading order result. It can be shown that this integral equation has exactly the same form as the Boltzmann equation. We show that the integral equation for the viscosity can be reexpressed by writing the vertex as a combination of polarization tensors. An expression for this polarization tensor can be obtained by solving another Schwinger-Dyson type integral equation. This procedure results in an expression for the viscosity that represents a non-perturbative resummation of contributions to the viscosity which includes certain non-ladder graphs, as well as the usual ladders. We discuss the motivation for this resummation. We show that these resummations can also be obtained by writing the viscosity as an integral equation involving a single four-point function. Finally, we show that when the viscosity is expressed in terms of a four-point function, it is possible to further extend the set of graphs included in the resummation by treating vertex and propagator corrections self-consistently. We discuss the significance of such a self-consistent resummation and show that the integral equation contains cancellations between vertex and propagator corrections.Comment: Revtex 40 pages with 29 figures, version to appear in Phys. Rev.

    Finite-temperature reaction-rate formula: Finite volume system, detailed balance, T0T \to 0 limit, and cutting rules

    Get PDF
    A complete derivation, from first principles, of the reaction-rate formula for a generic process taking place in a heat bath of finite volume is given. It is shown that the formula involves no finite-volume correction. Through perturbative diagrammatic analysis of the resultant formula, the detailed-balance formula is derived. The zero-temperature limit of the formula is discussed. Thermal cutting rules, which are introduced in previous work, are compared with those introduced by other authors.Comment: 35pages (text) plus 4pages (figures

    Lattice Artefacts In The Non-Abelian Debye Screening Mass In One Loop Order

    Get PDF
    We compute the electric screening mass in lattice QCD with Wilson fermions at finite temperature and chemical potential to one-loop order, and show that lattice artefacts arising from a finite lattice spacing result in an enhancement of the screening mass as compared to the continuum. We discuss the magnitude of this enhancement as a function of the temperature and chemical potential for lattices with different number of lattice sites in the temporal direction that can be implemented in lattice simulations. Most of the enhancement is found to be due to the fermion loop contribution.Comment: 23 pages, 8 figures, LaTe

    The Finite-Temperature Feynman Propagator in Operator Form

    Get PDF
    In momentum space the Feynman propagator DF(k)D_{F}(k) at non-zero temperature is defined by a simple dispersion relation with the familiar property of being an even function of k0k^{0} and analytic for Re(k0)2>0(k^{0})^{2}>0. The coordinate space form of the propagator DF(x)D_{F}(x) is expressed directly in terms of matrix elements of the field operator and requires a new type of operator ordering.Comment: 9 pages plain Te

    Absorption of Electro-magnetic Waves in a Magnetized Medium

    Full text link
    In continuation to our earlier work, in which the structure of the vacuum polarisation tensor in a medium was analysed in presence of a background electro-magnetic field, we discuss the absorptive part of the vacuum polarization tensor. Using the real time formalism of finite temperature field theory we calculate the absorptive part of 1-loop vacuum polarisation tensor in the weak field limit (eB<m2eB < m^2). Estimates of the absorption probability are also made for different physical conditions of the background medium.Comment: 9 Pages. One figure. LaTe
    corecore