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THE FINITE-TEMPERATURE FEYNMAN PROPAGATOR

IN OPERATOR FORM

H. Arthur Weldon

Department of Physics

West Virginia University

Morgantown, WV 26506-6315

September 1, 1995

In momentum space the Feynman propagator DF (k) at non-zero temperature is de-

fined by a simple dispersion relation with the familiar property of being an even function

of k0 and analytic for Re(k0)2 > 0. The coordinate space form of the propagator DF (x)

is expressed directly in terms of matrix elements of the field operator and requires a new

type of operator ordering.

PACS: 11.10.Wx, 12.38.Mh, 11.15.Bt
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I. INTRODUCTION

In zero-temperature field theory the Feynman propagator is the vacuum expectation

value of the time-ordered product of two field operators. Therefore it is rather curious

that at non-zero temperature the Feynman propagator and the time-ordered propagator

propagator are different. At T 6= 0 the time-ordered propagator for a real scalar field φ is

iD11(x) =
∑

N

〈N |T
(

φ(x)φ(0)
)

|N〉
e−βEN

Z
(1)

where |N〉 are eigenstates of the total Hamiltonian and β is the inverse temperature. In

momentum space it has the dispersion representation [1,2]

D11(k) =

∫

∞

−∞

dω
( 1 + f(ω)

k0 − ω + iη
−

f(ω)

k0 − ω − iη

)

ρ(ω,~k) (2)

where f(ω) = 1/[eβω − 1] and the spectral function is

ρ(k) =
1

2π

∑

N

∫

d4x eik·x〈N |
[

φ(x), φ(0)
]

|N〉
e−βEN

Z
(3)

Because ρ(k) is real, it is easy to separate the real and imaginary parts of (2):

ReD11(k) = P

∫

∞

−∞

dω
ρ(ω,~k)

k0 − ω

ImD11(k) = −π coth(
βk0

2
) ρ(k)

(4)

To explain what is meant by the Feynman propagator at non-zero temperature it

is helpful to recall that real-time calculations require doubling the number of degrees of

freedom [2-9]. Associated with each physical field is an auxiliary field. All propagators

become 2 × 2 matrices in the internal space. Thus D11 is one entry in the 2 × 2 matrix.

In momentum space it has the form [2-9]

Dad(k) = Uab

[

DF (k) 0
0 −D∗

F (k)

]

bc

Ucd (5)

where DF (k) is the Feynman propagator. The simplicity of this matrix structure indicates

that the thermal Feynman propagator plays a central role in thermal field theory. To

2



extract a representation for DF (k), use U12 = U21 = [exp(β|k0|)−1]−1/2 and U11 = U22 =

exp(β|k0|/2)U12 to obtain

D11(k) =
DF (k) exp(β|k

0|)−D∗

F (k)

exp(β|k0|)− 1
(6)

When the real and imaginary parts of this relation are compared to (4) the result is

ReDF (k) = P

∫

∞

−∞

dω
ρ(ω,~k)

k0 − ω

ImDF (k) = −πǫ(k0) ρ(k)

(7)

Consequently the thermal Feynman propagator satisfies the dispersion relation

DF (k) =

∫

∞

−∞

dω
ρ(ω,~k)

k0 − ω + iηǫ(k0)
(8)

Using ρ(−k0, ~k) = −ρ(k0, ~k) this can also be written

DF (k) =

∫

∞

0

dω
2ω ρ(ω,~k)

(k0)2 − ω2 + iη
(9)

This dispersion relation is not new; it is discussed in [2] for example. It shows that

the thermal Feynman propagator is an even function of k0 that is analytic in the region

Re(k0)2 > 0. The dispersion relation has exactly the same appearance as at zero tem-

perature because all dependence on the temperature is contained in the thermal spectral

function. (In practice it is more complicated than at zero temperature because there are

no regions of ω where the spectral function vanishes.)

Since DF has rather simple properties and plays a central role in the matrix (5), it

seems worthwhile to ask how DF can be expressed directly in terms of matrix elements

of the field operator φ(x). The answer to this question is given below in (10). The proof

of (10) is that the Fourier transform produces the defining dispersion relation (8). The

Appendix contains a discussion of how to extract the operator form for the Feynman proper

self-energy ΠF (x).
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II. OPERATOR FORM FOR DF (x)

In coordinate space the Feynman propagator is the thermal average of a certain or-

dered product of two field operators. The ordering is, however, more complicated than the

usual time-ordering. The result is

iDF (x) =
∑

N

[

〈N |φ(x) θN (t) φ(0)|N〉

+〈N |φ(0) θN (−t) φ(x)|N〉
] e−βEN

Z

(10)

The new ordering operation is defined by

θN (t) = θ(t)θ(H − EN )− θ(−t)θ(EN −H) (11)

Having the Hamiltonian operator in the argument of the theta function is a compact way

of representing a projection operator. For example

θ(H − EN ) =
∑

EA>EN

|A〉〈A| (12)

Since the ordering depends only on the energy EN and not on a particular state |N〉, it

could be labelled θEN
(x0), but that seems cumbersome. The time derivative of (11) is

particularly simple:

d

dt
θN (t) = δ(t) (13)

Note that (10) can be written in a variety of forms by inserting a complete set of states

(12) and regrouping the matrix elements in various ways. In the zero-temperature limit

(10) reduces to the usual time-ordered product as it should. In this limit the only state

|N〉 that contributes is the vacuum. Since θ(H−Evac) = 1 and θ(Evac−H) = 0, it follows

that θN (t) → θ(t) at zero temperature.

The remainder of the discussion will prove that the Fourier transform of (10) yields

the dispersion relation (8). To do this it is simplest to transform only the time-dependence

of (10) without changing the space-dependence

DF (k
0, ~x) =

∫

∞

−∞

dt eik
0t DF (x) (14)
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Examine the first term 〈N |φ(x)θN(t)φ(0)|N〉 in (10). Using the time-dependence of the

Heisenberg field, φ(x) = exp(iHt)φ(~x) exp(−iHt), this can be written

〈N |φ(x)θN (t)φ(0)|N〉 = 〈N |φ(~x)ei(EN−H)t θN (t)φ(0)|N〉

the Fourier transform is

∫

∞

−∞

dt eik
0t〈N |φ(x)θN(t)φ(0)|N〉 = i〈N |φ(~x) R φ(0)|N〉

where

R ≡
θ(H −EN )

k0 + EN −H + iη
+

θ(EN −H)

k0 + EN −H − iη

As before, the appearance of the Hamiltonian operator can be replaced by summing over

a complete set of states. One can write R more compactly as

R =

∫

∞

−∞

dω
δ(ω +EN −H)

k0 − ω + iηǫ(k0)
(15)

In the same way the Fourier transform of the second term in (10) is

∫

∞

−∞

dt eik
0t〈N |φ(0)θN (−t)φ(x)|N〉 = −i〈N |φ(0) S φ(~x)|N〉

where

S =

∫

∞

−∞

dω
δ(ω − EN +H)

k0 − ω + iηǫ(k0)
(16)

The propagator (10) thus has the form

DF (k
0, ~x) =

∫

∞

−∞

dω
∑

N

e−βEN

Z

fN (ω, ~x)

k0 − ω + iηǫ(k0)
(17)

where
fN (ω, ~x) =〈N |φ(~x)δ(ω +EN −H)φ(0)|N〉

−〈N |φ(0)δ(ω −EN +H)φ(~x)|N〉

It is easy to see that fN is the Fourier transform of the commutator:

fN (ω, ~x) =

∫

∞

−∞

dt

2π
eiωt

(

〈N |φ(~x)ei(EN−H)tφ(0)|N〉

−〈N |φ(0)ei(H−EN )tφ(~x)|N〉
)

=

∫

∞

−∞

dt

2π
eiωt〈N |

[

φ(x), φ(0)
]

|N〉
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where the time dependence of φ(x) was used in the last step. Thus the integrand of (17)

contains the thermal spectral function:

∑

N

e−βEN

Z
fN (ω, ~x) =

∫

∞

−∞

dteiωtρ(t, ~x) = ρ(ω, ~x) (18)

Consequently

DF (k
0, ~x) =

∫

∞

−∞

dω
ρ(ω, ~x)

k0 − ω + iηǫ(k0)
(19)

The spatial Fourier transform of this is the defining relation (8) and thus proves that the

operator form (10) is correct.

To use the operator form systematically one could develop the diagramatic rules for

perturbation theory. This would require a Wick theorem for the θN product and an

extension of the operator approach of Nieves [8] from the time-ordered to the Feynman

case. It might also be interesting to find the operator form for the finite temperature

Feynman propagator of quarks and gluons.
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APPENDIX A: THE FEYNMAN PROPER SELF-ENERGY

It is possible to deduce the operator form for the Feynman proper self-energy ΠF (x)

that generates DF (x) . In momentum space the proper self-energy ΠF (k) is defined by

DF (k) =
1

k2 −m2 − ΠF (k)
(A1)

The dispersion relation (9) guarantees that ΠF (k) is analytic in the region Re(k0)2 > 0

and that ImΠF (k) is negative when k0 real. Rewrite (A1) in the form

(−k2 +m2)DF (k) = −1− ΠF (k) DF (k) (A2)

The coordinate space form of (A2) is the Schwinger-Dyson equation:

( +m2)DF (x) = −δ4(x)−

∫

d4y ΠF (x− y)DF (y) (A3)

To deduce the operator form for ΠF (x) we therefore need to apply ( +m2) to the operator

representaion (10). A single time derivative of (10) gives

iḊF (x) =
∑

N

[

〈N |φ̇(x) θN (t) φ(0)|N〉

+〈N |φ(0) θN (−t) φ̇(x)|N〉
] e−βEN

Z

(A4)

Because of (13) the terms involving the time derivative of θN (t) give

δ(t)
∑

N

〈N |
[

φ(x), φ(0)
]

|N〉
e−βEN

Z
= 0 (A5)

which contains the commutator is at space-like separation and thus vanishes by causality.

The second time derivative is

iD̈F (x) =
∑

N

[

δ(t)〈N |
[

φ̇(x), φ(0)
]

|N〉

+〈N |φ̈(x) θN (t) φ(0)|N〉

+〈N |φ(0) θN (−t) φ̈(x)|N〉
] e−βEN

Z

(A6)
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The first term of (A6) gives −iδ4(x) because of the equal time commutation relations. The

remaing two terms are given by the field equation

φ̈(x) = (∇2 −m2)φ(x) + J(x) (A7)

where J = δLI/δφ. Consequently (A6) becomes

( +m2)DF (x) = −δ4(x)− i
∑

N

[

〈N |J(x) θN (t) φ(0)|N〉

+〈N |φ(0) θN (−t) J(x)|N〉
] e−βEN

Z

(A8)

This is just the form (A3). If DF in (A3) were written as a function of x− z instead of x

only, then the integrand of the d4y integration would be ΠF (x−y)DF (y−z). Comparison

with (A8) gives

∫

d4yΠF (x− y)DF (y − z) = i
∑

N

[

〈N |J(x) θN (x0 − z0) φ(z)|N〉

+〈N |φ(z) θN (z0 − x0) J(x)|N〉
] e−βEN

Z

(A9)

This defines the operator form of the Feynman proper self-energy in direct analogy to the

definition of the time-ordered proper self-energy [10].
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